Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Immunopathol Pharmacol ; 38: 3946320241265945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39102374

RESUMEN

OBJECTIVES: This study aimed to explore the unique transcriptional feature of fibroblasts subtypes and the role of ferroptosis in diabetic foot ulcers (DFUs). METHODS: The GEO (Gene Expression Omnibus) was searched to obtain the DFUs single-cell and transcriptional datasets. After identifying cell types by classic marker genes, the integrated single-cell dataset was used to run trajectory inference, RNA velocity, and ligand-receptor interaction analysis. Next, bulk RNA-seq datasets of DFUs were analyzed to the key ferroptosis genes. RESULTS: Here, we profile 83529 single transcriptomes from the foot samples utilizing single-cell sequencing (scRNA-seq) data of DFU from GEO database and identified 12 cell types, with fibroblasts exhibiting elevated levels of ferroptosis activity and substantial cellular heterogeneity. Our results defined six main fibroblast subsets that showed mesenchymal, secretory-reticular, secretory-papillary, pro-inflammatory, myogenesis, and healing-enriched functional annotations. Trajectory inference and cell-cell communication analysis revealed two major cell fates with subpopulations of fibroblasts and altered ligand-receptor interactions. Bulk RNA sequencing data identified CGNL1 as a distinctive diagnostic signature in fibroblasts. Notably, CGNL1 positively correlated with pro-inflammatory fibroblasts. CONCLUSIONS: Overall, our analysis delineated the heterogeneity present in cell populations of DFUs, showing distinct fibroblast subtypes characterized by their own unique transcriptional features and enrichment functions. Our study will help us better understand DFUs pathogenesis and identifies CGNL1 as a potential target for DFUs therapies.


Asunto(s)
Pie Diabético , Fibroblastos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Pie Diabético/genética , Pie Diabético/diagnóstico , Pie Diabético/patología , Humanos , Fibroblastos/metabolismo , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Biomarcadores/metabolismo , Transcriptoma
2.
Nurs Open ; 10(3): 1923-1930, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36377574

RESUMEN

AIM: This study aims to explore the mind of Chinese nursing students transitioning to online education in the pandemic using health as expanding consciousness (HEC) as methodology. DESIGN: A qualitative, descriptive study based on interviews. METHODS: This qualitative study was conducted from September to November 2021 by students in the Guangzhou university of Chinese medicine. Thirteen participants were recruited using purposive sampling. A questionnaire containing two sections with demographic information, the General Self-Efficacy Scale (GSES) and the Connor-Davidson resilience scale (CD-RISC)-10 was collected to explore the health of participants. RESULTS: A total of 13 participants were enrolled in the study (69% female). Students ranged in age between 19 and 24 years and the mean age was 22 years. All students lived with their families. Five participants (38%) had a master's degree in nursing, three (23%) were in fourth year of college, four (30%) were in third year of college and one (7%) was in their second year of college respectively. More than half of the participants had high levels of mental toughness and self-efficacy. Four generic categories were identified form a unitary-transformative paradigm perspective. The respondents reported three health pattern phases: Curriculum Transformation, Curriculum adaptation and Curriculum expansion. CONCLUSION: This research backs up Newman's hypothesis, and supports the theoretical framework. HEC explains well the psychology of nursing students during the epidemic. More research is needed in the future to develop comprehensive, targeted emotional regulation therapies for nursing students.


Asunto(s)
Estado de Conciencia , Estudiantes de Enfermería , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Estudiantes de Enfermería/psicología , Proyectos de Investigación , Encuestas y Cuestionarios , Curriculum
3.
Int J Immunopathol Pharmacol ; 36: 3946320221129134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189637

RESUMEN

Recurrent aphthous stomatitis (RAS) are complex inflammatory diseases caused by multi-factors, which severely impact patient quality of life. However, there is still no effective treatment method for RAS without side effects. Traditionally, Cortex Phellodendri known as "Huang Bai" was used to treat RAS for antibacterial and anti-inflammatory properties in China. Network pharmacology methods and bioinformatics analysis were utilized to search and fish incorporating target. Network analysis and silico validation were used to discover the pharmacological mechanisms of "Huang Bai" for the treatment of RAS. A total of 25 active ingredients in HB, 200 drug targets, and 578 differentially expressed genes (DEGs) between Recurrent aphthous stomatitis and normal samples were obtained. The Gene Ontology enrichment analysis revealed that the immune response was the most significantly enriched term within the DEGs. The KEGG pathway analysis identified 60 significant pathways, most of which involved in the inhibition of inflammation and regulation of immunological response. The functions are dependent on a multi-pathway, particularly the TNF signaling pathway and the HIF-1 signaling pathway. We identified six hub genes in the PPI network, most of which were validated as highly expressed in oral ulcers by DiseaseMeth databases. In addition, molecular docking displayed that the primary molecule combined well with the key targets. "Huang Bai" contains potential anti-RAS active compounds. This study reflects the multi-component multi-target multi-pathway action characteristics of "Huang Bai." Our study provides potential biomarkers or treatment targets for further research.


Asunto(s)
Medicamentos Herbarios Chinos , Estomatitis Aftosa , Animales , Antibacterianos , Biomarcadores , Biología Computacional/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red , Calidad de Vida , Estomatitis Aftosa/tratamiento farmacológico , Estomatitis Aftosa/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-35096100

RESUMEN

In order to comprehensively explore multitarget mechanism and key active compounds of Artemisia argyi essential oil (AAEO) in the treatment of pressure injuries (PIs), we analyzed the biological functions and pathways involved in the intersection targets of AAEO and PIs based on network pharmacology, and the affinity of AAEO active compounds and core targets was verified by molecular docking finally. In our study, we first screened 54 effective components according to the relative content and biological activity. In total, 103 targets related to active compounds of AAEO and 2760 targets associated with PIs were obtained, respectively, and 50 key targets were overlapped by Venny 2.1.0. The construction of key targets-compounds network was achieved by the STRING database and Cytoscape 3.7.2 software. GO analysis from Matespace shows that GO results are mainly enriched in biological processes, including adrenergic receptor activity, neurotransmitter clearance, and neurotransmitter metabolic process. KEGG analysis by the David and Kobas website shows that the key targets can achieve the treatment on PIs through a pathway in cancer, PI3K-Akt signaling pathway, human immunodeficiency virus 1 infection, MAPK signaling pathway, Wnt signaling pathway, etc. In addition, molecular docking results from the CB-Dock server indicated that active compounds of AAEO had good activity docking with the first 10 key targets. In conclusion, the potential targets and regulatory molecular mechanisms of AAEO in the treatment of PIs were analyzed by network pharmacology and molecular docking. AAEO can cure PIs through the synergistic effect of multicomponent, multitarget, and multipathway, providing a theoretical basis and new direction for further study.

5.
Exp Ther Med ; 13(5): 1841-1849, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28565776

RESUMEN

In our previous reports, it was revealed that steroids in traditional Chinese medicine (TCM) have the therapeutic potential to treat bone disease. In the present study, an in vitro model of a vitamin D receptor response element (VDRE) reporter gene assay in mesenchymal stem cells (MSCs) was used to identify steroids that enhanced osteogenic differentiation of MSCs. (+)-cholesten-3-one (CN), which possesses a ketone group that is modified in cholesterol and cholesterol myristate, effectively promoted the activity of the VDRE promoter. Phenotypic cellular analysis indicated that CN induced differentiation of MSCs into osteogenic cells and increased expression of specific osteogenesis markers, including alkaline phosphatase, collagen II and Runt-related transcription factor 2. Furthermore, CN significantly increased the expression of osteopontin, the target of the vitamin D receptor (VDR), which indicated that CN may activate vitamin D receptor signaling. Over-expression of VDR or knockdown studies with VDR-small interfering RNA revealed that the pro-differentiation effects induced by CN required VDR. Furthermore, the present study determined that the C-terminal region of the VDR is responsible for the action of CN. Taken together, the present findings demonstrated that CN induced osteogenic differentiation of MSCs by activating VDR. The present study explored the regulation of stem cells by using a series of similar steroids and provided evidence to support a potential strategy for the screening of novel drugs to treat bone disease in the future.

6.
Chem Pharm Bull (Tokyo) ; 64(4): 319-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26842908

RESUMEN

As a phenolic alkaloid occurring in Cruciferous plants, sinapine was observed to protect mesenchymal stem cells (MSCs) against ·OH-induced damage in this study. It was also found to prevent DNA from damage, to scavenge various free radicals (·OH, ·O2(-), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt) (ABTS)(+·), and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)), and to reduce Cu(2+) to Cu(+). To further explore the mechanism, the end-product of sinapine reaction with DPPH· was determined using HPLC-electrospray ionization (ESI)-MS/MS and HPLC-diode array detector (DAD). Four molecular ion peaks (m/z 701, 702, 703, and 351) in HPLC-ESI-MS/MS analysis indicated a radical adduct formation (RAF) pathway; while a bathochromic shift (λ(max) 334→475 nm) in HPLC-DAD indicated the formation of quinone as the oxidized product of the phenolic -OH group. Based on these results, it may be concluded that, (i) sinapine can effectively protect against ·OH-induced damage to DNA and MSCs; such protective effect may provide evidence for a potential role for sinapine in MSC transplantation therapy, and be responsible for the beneficial effects of Cruciferous plants. (ii) The possible mechanism for sinapine to protect against ·OH-induced oxidative damage is radical-scavenging, which is thought to be via hydrogen atom (H·) transfer (HAT) (or sequential electron (e) proton transfer (SEPT))→RAF pathways.


Asunto(s)
Colina/análogos & derivados , Radical Hidroxilo/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Colina/farmacología , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Ratas , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta
7.
BMC Complement Altern Med ; 15: 377, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26481508

RESUMEN

BACKGROUND: Xingnaojing (XNJ), a well known prescription in traditional Chinese medicine, has been used for treatment of stroke in China. However, the effects and mechanisms of XNJ on autophagy are not clear. Here, we used the cell models of autophagy induced by serum-free condition and ischemia stroke in rats to further investigate whether the p53-DRAM pathway is involved in the effects of XNJ on autophagy. METHODS: We used the cell model of autophagy induced by serum-free condition and the rat model of ischemia caused by a middle cerebral artery occlusion (MCAO). The effects of XNJ on p53 transcriptional activity of PC12 cells were evaluated by the luciferase activity assay. The mRNA levels and the expression of p53 and its target autophagy gene DRAM (damage-regulated autophagy modulator) were analyzed respectively by Quantitative-RTPCR and Western blot assay. The activation of autophagy was detected by the levels of autophagy markers, microtubule associated protein light chain 3 (LC3) and p62 by Immunofluorescence and Western blot. p53 inhibitor was used to determine whether p53 is responsible for the effects of XNJ on preventing autophagy. RESULTS: The assay for luciferase activity of p53 promoter indicated that XNJ inhibited p53 transcriptional activity. XNJ reduced the expression of p53 and its target autophagy gene DRAM (damage-regulated autophagy modulator) in serum-free condition PC12 cells and the cortex in MCAO rats. XNJ reduced autophagy of PC12 cells induced by serum-free condition and the cortex in MCAO rats. Furthermore, suppression of p53 by p53 inhibitor significantly reduced the effects of XNJ on the autophagy of PC12 cells in serum-free condition. CONCLUSION: XNJ prevents autophagy in experimental stroke by repressing p53/DRAM pathway. Our findings are therefore of considerable therapeutic significance and provide the novel and potential application of XNJ for the treatment of brain diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Proteínas de la Membrana/genética , Accidente Cerebrovascular/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Animales , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Células PC12 , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Proteína p53 Supresora de Tumor/metabolismo
8.
Brain Res ; 1552: 41-54, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24457043

RESUMEN

ß-Asarone is an active component of the Acori graminei rhizome that is a traditional Chinese medicine clinically used in treating dementia in China. However, the cognitive effect of ß-asarone and its mechanism has remained elusive. Here, we used asenescence-accelerated prone 8 (SAMP8) mice, which mimic many of the salient features of Alzheimer׳s disease (AD), to further investigate whether modulation of the ROCK signaling pathway and/or autophagy, synaptic loss is involved in the effects of ß-asarone on learning and memory. SAMP8 mice at the age of 6 months were intragastrically administered by ß-asarone or a vehicle daily for 2 months. Senescence-accelerated-resistant (SAMR1) mice were used as the control. Our results demonstrate that autophagy and ROCK expression were increased significantly in 8 months SAMP8 mice, which were concomitant with that SAMP8 mice at the same age displayed a significant synaptic loss and cognitive deficits. The up-regulation of ROCK expression and autophage in the hippocampus of SAMP8 were significantly reduced by ß-asarone, and prevents synaptic loss and improved cognitive function of the SAMP8 mice. ß-asarone decreased neuronophagia and lipofuscin in the hippocampus of SAMP8 mice, but did not reduce Aß42 levels and malondialdehyde levels and superoxide dismutase activities. Moreover, suppression of ROCK2 by siRNA significantly reduced the effects of ß-asarone on the autophage and synaptic proteins expression in PC12 cells damage induced by Aß1-40. Taken together, ß-asarone prevents autophagy and synaptic loss by reducing ROCK expression in SAMP8 mice.


Asunto(s)
Envejecimiento Prematuro/tratamiento farmacológico , Anisoles/uso terapéutico , Autofagia/efectos de los fármacos , Región CA3 Hipocampal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Proteínas del Tejido Nervioso/biosíntesis , Fármacos Neuroprotectores/uso terapéutico , Sinapsis/efectos de los fármacos , Quinasas Asociadas a rho/biosíntesis , Envejecimiento Prematuro/enzimología , Envejecimiento Prematuro/psicología , Derivados de Alilbenceno , Péptidos beta-Amiloides/análisis , Animales , Anisoles/farmacología , Región CA3 Hipocampal/química , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/prevención & control , Evaluación Preclínica de Medicamentos , Inducción Enzimática/efectos de los fármacos , Lipofuscina/análisis , Potenciación a Largo Plazo/efectos de los fármacos , Malondialdehído/análisis , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/análisis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Fragmentos de Péptidos/análisis , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Superóxido Dismutasa/análisis , Sinapsis/enzimología , Regulación hacia Arriba/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...