Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Funct ; 14(15): 6828-6839, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37470081

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor issues and a range of non-motor symptoms. Microbial therapy may be a useful approach for the treatment of PD. However, comprehensive analyses of the impact of probiotic supplementation on motor and non-motor symptoms are still lacking and the mechanisms whereby the treatment works remain unclear. This study investigated Lacticaseibacillus paracasei strain Shirota (LcS) supplementation on clinical responses, gut microbiota and faecal metabolites in PD patients. Patients (n = 128) were randomised to receive either probiotics (LcS-fermented milk, containing 1 × 1010 living LcS cells) or placebo for 12 weeks. All participants were examined and the basic clinical features were recorded using questionnaires. Fecal and blood samples were collected at the baseline and after 12 weeks for further omics analysis. We found that LcS intervention significantly alleviated patients' constipation-related symptoms and non-motor symptoms. We found no significant shifts in the composition of gut microbiota or faecal metabolites. Several taxa were differentially abundant between the groups, especially with regard to LcS intake, which increased the abundance of the genus Lacticaseibacillus in the probiotic group compared with those at the baseline and in the placebo group. The faecal concentration of L-tyrosine was significantly decreased and the plasma concentration of L-tyrosine was increased in the probiotic group compared with the placebo group. Our study demonstrated that although supplementation with LcS did not induce major changes in the global gut microbiome, the probiotic had favorable effects in managing constipation and other non-motor symptoms in PD patients. This study was registered at the Chinese Clinical Trial Registry: ChiCTR1800016795.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus casei , Lacticaseibacillus paracasei , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Probióticos , Humanos , Lacticaseibacillus , Enfermedad de Parkinson/tratamiento farmacológico , Estreñimiento/terapia , Tirosina
2.
Neurology ; 99(22): e2443-e2453, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36240098

RESUMEN

BACKGROUND AND OBJECTIVES: Interindividual variability in levodopa efficacy is a challenge for the personalized treatment of Parkinson disease (PD). Gut microbiota might represent a new approach for personalized medicine. Recently, a novel microbial levodopa metabolism pathway was identified, which is mediated by tyrosine decarboxylase mainly encoded by tyrosine decarboxylase gene (tyrDC) in Enterococcus faecalis. In this study, we aimed to identify whether the abundance of microbial tyrDC gene and E faecalis is associated with levodopa responsiveness and could predict the drug response. METHODS: This cross-sectional study enrolled patients with PD between December 2019 and January 2022 and evaluated levodopa responsiveness using a levodopa challenge test. Patients were stratified into moderate and good responders based on levodopa responsiveness. The tyrDC gene and E. faecalis abundance in fecal samples were measured using quantitative real-time PCR. Plasma levodopa concentrations were measured using liquid chromatography-tandem mass spectrometry analysis. The predictive models for levodopa responsiveness were constructed and verified through cross-validation and external validation. RESULTS: A total of 101 patients with PD were enrolled in the primary cohort and 43 were enrolled in the external validation cohort. Moderate responders had higher abundances of the tyrDC gene (3.6 [3.1-4.3] vs 2.6 [2.1-2.9], p < 0.001) and E faecalis (3.2 [2.5-4.4] vs 2.6 [2.1-3.6], p = 0.010) than good responders. The tyrDC gene abundance was independently associated with levodopa responsiveness (OR: 5.848; 95% CI: 2.664-12.838; p < 0.001). Notably, tyrDC gene abundance showed certain discriminative power for levodopa responsiveness in primary cohort (sensitivity: 80.0%; specificity: 84.3%; area under the curve [AUC]: 0.85; 95% CI: 0.77-0.93; p < 0.001) and external validation cohort (sensitivity: 85.0%; specificity: 95.7%; AUC: 0.95; 95% CI: 0.89-1.02; p < 0.001). The prediction of levodopa responsiveness based on tyrDC gene abundance had good calibration and discrimination in cross-validation (C-index in training and test sets: 0.856 and 0.851, respectively) and external validation (C-index: 0.952). DISCUSSION: The microbial tyrDC gene abundance could serve as a potential biomarker of levodopa responsiveness. Novel strategies targeting the tyrDC gene may provide new approaches for personalized levodopa treatment.


Asunto(s)
Enfermedad de Parkinson , Tirosina Descarboxilasa , Humanos , Tirosina Descarboxilasa/genética , Tirosina Descarboxilasa/metabolismo , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Estudios Transversales , Cromatografía Liquida , Antiparkinsonianos/uso terapéutico
3.
Mov Disord ; 37(8): 1634-1643, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35607987

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs) produced by gut microbiota are reduced in feces but paradoxically increased in plasma of patients with Parkinson's disease (PD), which may stem from intestinal wall leakage. Gut function should be taken into consideration when conducting microbial-metabolite research. OBJECTIVE: The objective was to investigate synchronous changes of SCFAs in feces and plasma of patients with PD, taking constipation as a confounder to better disentangle the SCFA metabolism exclusively associated with PD. METHODS: The concentrations of fecal and plasma SCFAs in 33 healthy control subjects and 95 patients with PD were measured using liquid and gas chromatography mass spectrometry, respectively. Patients with PD were divided into patients with PD without constipation (n = 35) and patients with PD with constipation (n = 60). Gut-blood barrier (GBB) permeability was assessed by plasma/fecal ratio of SCFA concentrations and fecal α1-antitrypsin concentration. RESULTS: Patients with PD displayed decreased concentrations of fecal acetic, propionic, and butyric acid and increased concentrations of plasma acetic and propionic acid. Fecal acetic, isobutyric, and isovaleric acid were lower and plasma acetic and propionic acid were higher in patients with PD with constipation than in patients with PD without constipation. Constipation aggravated GBB permeability in patients with PD. Combined fecal and plasma SCFAs could discriminate patients with PD from healthy control subjects. Fecal SCFAs, except propionic acid, were negatively correlated with disease severity, while plasma acetic, propionic, and valeric acid showed a positive correlation. CONCLUSIONS: Our study showed alterations of fecal and plasma SCFAs in patients with PD that were associated with an impaired GBB and might be aggravated by constipation. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Propionatos , Estreñimiento/etiología , Ácidos Grasos Volátiles/metabolismo , Heces/química , Humanos , Enfermedad de Parkinson/complicaciones , Propionatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...