Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
medRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645094

RESUMEN

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.

2.
Genet Med ; 26(6): 101102, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38431799

RESUMEN

PURPOSE: Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS: The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS: We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION: To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.

3.
Clin Genet ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38545656

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) occurs in up to 7 out of 1000 births and accounts for almost a quarter of neonatal deaths worldwide. Despite the name, many newborns with HIE have little evidence of perinatal hypoxia. We hypothesized that some infants with HIE have genetic disorders that resemble encephalopathy. We reviewed genetic results for newborns with HIE undergoing exome or genome sequencing at a clinical laboratory (2014-2022). Neonates were included if they had a diagnosis of HIE and were delivered ≥35 weeks. Neonates were excluded for cardiopulmonary pathology resulting in hypoxemia or if neuroimaging suggested postnatal hypoxic-ischemic injury. Of 24 patients meeting inclusion criteria, six (25%) were diagnosed with a genetic condition. Four neonates had variants at loci linked to conditions with phenotypic features resembling HIE, including KIF1A, GBE1, ACTA1, and a 15q13.3 deletion. Two additional neonates had variants in genes not previously associated with encephalopathy, including DUOX2 and PTPN11. Of the six neonates with a molecular diagnosis, two had isolated HIE without apparent comorbidities to suggest a genetic disorder. Genetic diagnoses were identified among neonates with and without sentinel labor events, abnormal umbilical cord gasses, and low Apgar scores. These results suggest that genetic evaluation is clinically relevant for patients with perinatal HIE.

4.
Am J Med Genet A ; : e63589, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469956

RESUMEN

PARS2 encodes an aminoacyl-tRNA synthetase that catalyzes the ligation of proline to mitochondrial prolyl-tRNA molecules. Diseases associated with PARS2 primarily affect the central nervous system, causing early infantile developmental epileptic encephalopathies (EIDEE; DEE75; MIM #618437) with infantile-onset neurodegeneration. Dilated cardiomyopathy has also been reported in the affected individuals. About 10 individuals to date have been described with pathogenic biallelic variants in PARS2. While many of the reported individuals succumbed to the disease in the first two decades of life, autopsy findings have not yet been reported. Here, we describe neuropathological findings in a deceased male with evidence of intracranial calcifications in the basal ganglia, thalamus, cerebellum, and white matter, similar to Aicardi-Goutières syndrome. This report describes detailed autopsy findings in a child with PARS2-related mitochondrial disease and provides plausible evidence that intracranial calcifications may be a previously unrecognized feature of this disorder.

5.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260438

RESUMEN

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

6.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191484

RESUMEN

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Asunto(s)
Ciliopatías , Genes Ligados a X , Repeticiones WD40 , Animales , Humanos , Masculino , Encéfalo , Ciliopatías/genética , Cognición , Pez Cebra/genética
7.
Am J Med Genet A ; 194(3): e63445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37872713

RESUMEN

The bromodomain adjacent to zinc finger 2B (BAZ2B) gene encodes a chromatin remodeling protein that has been shown to perform a variety of regulatory functions. It has been proposed that loss of BAZ2B function is associated with neurodevelopmental phenotypes, and some recurrent structural birth defects and dysmorphic features have been documented among individuals carrying heterozygous loss-of-function BAZ2B variants. However, additional evidence is needed to confirm that these phenotypes are attributable to BAZ2B deficiency. Here, we report 10 unrelated individuals with heterozygous deletions, stop-gain, frameshift, missense, splice junction, indel, and start-loss variants affecting BAZ2B. These included a paternal intragenic deletion and a maternal frameshift variant that were inherited from mildly affected or asymptomatic parents. The analysis of molecular and clinical data from this cohort, and that of individuals previously reported, suggests that BAZ2B haploinsufficiency causes an autosomal dominant neurodevelopmental syndrome that is incompletely penetrant. The phenotypes most commonly seen in association with loss of BAZ2B function include developmental delay, intellectual disability, autism spectrum disorder, speech delay-with some affected individuals being non-verbal-behavioral abnormalities, seizures, vision-related issues, congenital heart defects, poor fetal growth, and an indistinct pattern of dysmorphic features in which epicanthal folds and small ears are particularly common.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Factores Generales de Transcripción , Humanos , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Fenotipo , Dedos de Zinc , Trastornos del Neurodesarrollo/genética , Proteínas que Contienen Bromodominio , Factores Generales de Transcripción/genética
8.
Acta Med Philipp ; 57(9): 116-120, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37990697

RESUMEN

Objective: Recent advances in epigenetic studies continue to reveal novel mechanisms of gene regulation and control, however little is known on the role of epigenetics in sensorineural hearing loss (SNHL) in humans. We aimed to investigate the methylation patterns of two regions, one in RB1 and another in GJB2 in Filipino patients with SNHL compared to hearing control individuals. Methods: We investigated an RB1 promoter region that was previously identified as differentially methylated in children with SNHL and lead exposure. Additionally, we investigated a sequence in an enhancer-like region within GJB2 that contains four CpGs in close proximity. Bisulfite conversion was performed on salivary DNA samples from 15 children with SNHL and 45 unrelated ethnically-matched individuals. We then performed methylation-specific real-time PCR analysis (qMSP) using TaqMan® probes to determine percentage methylation of the two regions. Results: Using qMSP, both our cases and controls had zero methylation at the targeted GJB2 and RB1 regions. Conclusion: Our study showed no changes in methylation at the selected CpG regions in RB1 and GJB2 in the two comparison groups with or without SNHL. This may be due to a lack of environmental exposures to these target regions. Other epigenetic marks may be present around these regions as well as those of other HL-associated genes.

9.
J Am Heart Assoc ; 12(18): e029340, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37681527

RESUMEN

Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well-recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal-related pathways were over-represented in single-gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions Intensive cardiac phenotyping in multisite registry data identifies genotype-phenotype associations in CHD patients with abnormal CMA.


Asunto(s)
Cardiopatías Congénitas , Niño , Humanos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Corazón , Genómica , Ventrículos Cardíacos , Análisis por Micromatrices
10.
Eur J Hum Genet ; 31(12): 1430-1439, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673932

RESUMEN

Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.


Asunto(s)
Anomalías Múltiples , Cardiopatías Congénitas , Síndrome de Cimitarra , Animales , Ratones , Síndrome de Cimitarra/genética , Secuenciación del Exoma , Anomalías Múltiples/genética , Deleción Cromosómica , Pruebas Genéticas , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Proteínas de Unión al ARN/genética
11.
Am J Med Genet A ; 191(9): 2433-2439, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37421366

RESUMEN

TANGO2-deficiency disorder (TDD) is an autosomal recessive condition arising from pathogenic biallelic variants in the TANGO2 gene. TDD is characterized by symptoms typically beginning in late infancy including delayed developmental milestones, cognitive impairment, dysarthria, expressive language deficits, and gait abnormalities. There is wide phenotypic variability where some are severely affected while others have mild symptoms. This variability has been documented even among sibling pairs who share the same genotype, but reasons for this variability have not been well understood. Emerging data suggest a potential link between B-complex or multivitamin supplementation and decreased metabolic crises in TDD. In this report, we describe two sibling pairs from unreladiagnosed with TDD with marked differences in symptoms. In both families, the older siblings suffered multiple metabolic crises and are clinically more affected than their younger siblings who have very mild to no symptoms; they are the least impaired among 70 other patients in our ongoing international natural history study. Unlike their older siblings, the two younger siblings started taking B-complex vitamins early between 9 and 16 months. This report delineates the mildest presentation of TDD in two families. These data may support a role for early diagnosis and initiation of vitamin supplementation to not only prevent metabolic crises but also improve neurologic outcomes in this life-threatening disorder.


Asunto(s)
Complejo Vitamínico B , Humanos , Hermanos , Cognición , Genotipo , Suplementos Dietéticos
12.
J Med Genet ; 60(11): 1092-1104, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37316189

RESUMEN

BACKGROUND: Helios (encoded by IKZF2), a member of the Ikaros family of transcription factors, is a zinc finger protein involved in embryogenesis and immune function. Although predominantly recognised for its role in the development and function of T lymphocytes, particularly the CD4+ regulatory T cells (Tregs), the expression and function of Helios extends beyond the immune system. During embryogenesis, Helios is expressed in a wide range of tissues, making genetic variants that disrupt the function of Helios strong candidates for causing widespread immune-related and developmental abnormalities in humans. METHODS: We performed detailed phenotypic, genomic and functional investigations on two unrelated individuals with a phenotype of immune dysregulation combined with syndromic features including craniofacial differences, sensorineural hearing loss and congenital abnormalities. RESULTS: Genome sequencing revealed de novo heterozygous variants that alter the critical DNA-binding zinc fingers (ZFs) of Helios. Proband 1 had a tandem duplication of ZFs 2 and 3 in the DNA-binding domain of Helios (p.Gly136_Ser191dup) and Proband 2 had a missense variant impacting one of the key residues for specific base recognition and DNA interaction in ZF2 of Helios (p.Gly153Arg). Functional studies confirmed that both these variant proteins are expressed and that they interfere with the ability of the wild-type Helios protein to perform its canonical function-repressing IL2 transcription activity-in a dominant negative manner. CONCLUSION: This study is the first to describe dominant negative IKZF2 variants. These variants cause a novel genetic syndrome characterised by immunodysregulation, craniofacial anomalies, hearing impairment, athelia and developmental delay.


Asunto(s)
Anomalías Craneofaciales , Discapacidades del Desarrollo , Pérdida Auditiva , Factor de Transcripción Ikaros , Humanos , Proteínas de Unión al ADN/genética , Factor de Transcripción Ikaros/genética , Síndrome , Discapacidades del Desarrollo/genética , Anomalías Craneofaciales/genética
13.
Genet Med ; 25(4): 100352, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36473599

RESUMEN

PURPOSE: TANGO2 deficiency disorder (TDD), an autosomal recessive disease first reported in 2016, is characterized by neurodevelopmental delay, seizures, intermittent ataxia, hypothyroidism, and life-threatening metabolic and cardiac crises. The purpose of this study was to define the natural history of TDD. METHODS: Data were collected from an ongoing natural history study of patients with TDD enrolled between February 2019 and May 2022. Data were obtained through phone or video based parent interviews and medical record review. RESULTS: Data were collected from 73 patients (59% male) from 57 unrelated families living in 16 different countries. The median age of participants at the time of data collection was 9.0 years (interquartile range = 5.3-15.9 years, range = fetal to 31.8 years). A total of 24 different TANGO2 alleles were observed. Patients showed normal development in early infancy, with progressive delay in developmental milestones thereafter. Symptoms included ataxia, dystonia, and speech difficulties, typically starting between the ages of 1 to 3 years. A total of 46/71 (65%) patients suffered metabolic crises, and of those, 30 (65%) developed cardiac crises. Metabolic crises were significantly decreased after the initiation of B-complex or multivitamin supplementation. CONCLUSION: We provide the most comprehensive review of natural history of TDD and important observational data suggesting that B-complex or multivitamins may prevent metabolic crises.


Asunto(s)
Ataxia , Convulsiones , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Embarazo , Atención Prenatal
15.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218524

RESUMEN

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Asunto(s)
Encéfalo , Malformaciones del Sistema Nervioso , Animales , Femenino , Humanos , Ratones , Cerebelo/anomalías , Neuronas
16.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168160

RESUMEN

Background: The utilization of genomic information to improve health outcomes is progressively becoming more common in clinical practice. Nonetheless, disparities persist in accessing genetic services among ethnic minorities, individuals with low socioeconomic status, and other vulnerable populations. The Rio Grande Valley at the Texas-Mexico border is predominantly Hispanic with a high poverty rate and an increased prevalence of birth defects, with very limited access to genetics services. The cost of a diagnosis is often times out of reach for these underserved families. Funded by the National Center for Advancing Translational Sciences (NCATS), Project GIVE (Genetic Inclusion by Virtual Evaluation) was launched in 2022 to shorten the time to diagnosis and alleviate healthcare inequities in this region, with the goal of improving pediatric health outcomes. Methods: Utilizing Consultagene, an innovative electronic health record (EHR) agnostic virtual telehealth and educational platform, we designed the study to recruit 100 children with rare diseases over a period of two years from this region, through peer-to-peer consultation and referral. Conclusions: Project GIVE study has allowed advanced genetic evaluation and delivery of genome sequencing through the virtual portal, effectively circumventing the recognized socioeconomic and other barriers within this population. This paper explores the successful community engagement process and implementation of an alternate genomics evaluation platform and testing approach, aiming to reduce the diagnostic journey for individuals with rare diseases residing in a medically underserved region.

17.
Am J Med Genet A ; 188(11): 3184-3190, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36065636

RESUMEN

Stroke causes significant disability and is a common cause of death worldwide. Previous studies have estimated that 1%-5% of stroke is attributable to monogenic etiologies. We set out to assess the utility of clinical exome sequencing (ES) in the evaluation of stroke. We retrospectively analyzed 124 individuals who received ES at the Baylor Genetics reference lab between 2012 and 2021 who had stroke as a major part of their reported phenotype. Ages ranged from 10 days to 69 years. 8.9% of the cohort received a diagnosis, including 25% of infants less than 1 year old; an additional 10.5% of the cohort received a probable diagnosis. We identified several syndromes that predispose to stroke such as COL4A1-related brain small vessel disease, homocystinuria caused by CBS mutation, POLG-related disorders, TTC19-linked mitochondrial disease, and RNASEH2A associated Aicardi-Goutieres syndrome. We also observed pathogenic variants in NSD1, PKHD1, HRAS, and ATP13A2, which are genes rarely associated with stroke. Although stroke is a complex phenotype with varying pathologies and risk factors, these results show that use of exome sequencing can be highly relevant in stroke, especially for those presenting <1 year of age.


Asunto(s)
Exoma , Accidente Cerebrovascular , Exoma/genética , Humanos , Fenotipo , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/genética , Secuenciación del Exoma/métodos
18.
Am J Med Genet A ; 188(12): 3516-3524, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35934918

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.


Asunto(s)
Síndromes Epilépticos , Espasmos Infantiles , Masculino , Femenino , Humanos , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Espasmos Infantiles/complicaciones , Síndromes Epilépticos/genética , Fenotipo , Encéfalo , Proteínas Serina-Treonina Quinasas/genética
19.
Eur J Hum Genet ; 30(9): 1044-1050, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35691983

RESUMEN

TANGO2 disorder is a rare genetic disease with multi-system effects that causes episodic crises. Quality of life and psychosocial effects of this rare disease have not previously been studied. To examine health-related quality of life (HRQoL), illness perceptions, and lived experience, we surveyed 16 children and 31 parents of children with TANGO2 disorder identified via a disease-specific social media group and research foundation email distribution list. We assessed HRQoL by parent proxy-report and child self-report using the Pediatric Quality of Life Inventory (PedsQL™). Parental perceptions of their child's condition were assessed using the revised illness perceptions questionnaire adapted for TANGO2 disorder (IPQ-R-TANGO2). To collect qualitative data on parents' lived experience, we used novel open-ended survey questions. Parent proxy-reported (n = 29) physical (78.4 (21)) and psychosocial health (73.4 (12.8)) were highest among toddlers with TANGO2 disorder. Parent proxy-reported physical health was lowest in young adults (34.4 (35.4)), and psychosocial health was lowest in teens (40.8 (10.8)). When compared to previously published PedsQL™ scores in healthy children, parent-proxy reported summary and scale scores for TANGO2 patients were significantly lower (all p < 0.001). Parents' IPQ-R-TANGO2 responses (n = 26) suggested that parents perceived significant negative consequences of the disease. Parents' open-ended survey responses (n = 21) highlighted that they derived support from the TANGO2 community. This study characterizes HRQoL in patients with TANGO2 disorder across a range of ages, identifies potential targets for HRQoL improvement, and provides valuable insight into the psychosocial effects of TANGO2 disorder on patients and their families.


Asunto(s)
Encefalopatías Metabólicas , Calidad de Vida , Adolescente , Arritmias Cardíacas , Humanos , Padres/psicología , Calidad de Vida/psicología , Autoinforme , Encuestas y Cuestionarios
20.
Heart Rhythm ; 19(10): 1673-1681, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568137

RESUMEN

BACKGROUND: TANGO2 deficiency disorder (TDD) is an autosomal recessive disease associated with metabolic crisis, lethal cardiac arrhythmias, and cardiomyopathy. Data regarding treatment, management, and outcomes of cardiac manifestations of TDD are lacking. OBJECTIVE: The purpose of this study was to describe TDD-related cardiac crises. METHODS: Retrospective multicenter chart review was made of TDD patients admitted with cardiac crises, defined as development of ventricular tachycardia (VT), cardiomyopathy, or cardiac arrest during metabolic crises. RESULTS: Twenty-seven children were admitted for 43 cardiac crises (median age 6.4 years; interquartile range [IQR] 2.4-9.8 years) at 14 centers. During crisis, QTc prolongation occurred in all (median 547 ms; IQR 504-600 ms) and a type I Brugada pattern in 8 (26%). Arrhythmias included VT in 21 (78%), supraventricular tachycardia in 3 (11%), and heart block in 1 (4%). Nineteen patients (70%) developed cardiomyopathy, and 20 (74%) experienced a cardiac arrest. There were 10 deaths (37%), 6 related to arrhythmias. In 5 patients, recalcitrant VT occurred despite use of antiarrhythmic drugs. In 6 patients, arrhythmias were controlled after extracorporeal membrane oxygenation (ECMO) support; 5 of these patients survived. Among 10 patients who survived VT without ECMO, successful treatment included intravenous magnesium, isoproterenol, and atrial pacing in multiple cases and verapamil in 1 patient. Initiation of feeds seemed to decrease VT events. CONCLUSION: TDD-related cardiac crises are associated with a high risk of arrhythmias, cardiomyopathy, cardiac arrest, and death. Although further studies are needed, early recognition and appropriate treatment are critical. Acutely, intravenous magnesium, isoproterenol, atrial pacing, and ECMO as a last resort seem to be the best current treatment options, and early initiation of feeds may prevent VT events.


Asunto(s)
Cardiomiopatías , Paro Cardíaco , Taquicardia Ventricular , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/terapia , Cardiomiopatías/complicaciones , Cardiomiopatías/diagnóstico , Niño , Paro Cardíaco/etiología , Paro Cardíaco/terapia , Humanos , Isoproterenol , Magnesio , Verapamilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA