Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Genes (Basel) ; 13(2)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35205303

RESUMEN

A core yet understudied symptom of autism is aberrant eating behaviour, including extremely narrow food preferences. Autistic individuals often refuse to eat despite hunger unless preferred food is given. We hypothesised that, apart from aberrant preference, underfeeding stems from abnormal hunger processing. Utilising an adult male VPA rat, a model of autism, we examined intake of 'bland' chow in animals maintained on this diet continuously, eating this food after fasting and after both food and water deprivation. We assessed body weight in adulthood to determine whether lower feeding led to slower growth. Since food intake is highly regulated by brain processes, we looked into the activation (c-Fos immunoreactivity) of central sites controlling appetite in animals subjected to food deprivation vs. fed ad libitum. Expression of genes involved in food intake in the hypothalamus and brain stem, regions responsible for energy balance, was measured in deprived vs. sated animals. We performed our analyses on VPAs and age-matched healthy controls. We found that VPAs ate less of the 'bland' chow when fed ad libitum and after deprivation than controls did. Their body weight increased more slowly than that of controls when maintained on the 'bland' food. While hungry controls had lower c-Fos IR in key feeding-related areas than their ad libitum-fed counterparts, in hungry VPAs c-Fos was unchanged or elevated compared to the fed ones. The lack of changes in expression of feeding-related genes upon deprivation in VPAs was in contrast to several transcripts affected by fasting in healthy controls. We conclude that hunger processing is dysregulated in the VPA rat.


Asunto(s)
Trastorno Autístico , Ingestión de Alimentos , Animales , Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Peso Corporal , Ingestión de Alimentos/genética , Expresión Génica , Masculino , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ácido Valproico/efectos adversos
2.
Exp Neurol ; 323: 113062, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513786

RESUMEN

The excitatory neurotransmitter glutamate is essential in basal ganglia motor circuits and has long been thought to contribute to cell death and degeneration in Parkinson's disease (PD). While previous research has shown a significant role of NMDA and AMPA receptors in both excitotoxicity and PD, the third class of ionotropic glutamate receptors, kainate receptors, have been less well studied. Given the expression of kainate receptor subunits GluK1-GluK3 in key PD-related brain regions, it has been suggested that GluK1-GluK3 may contribute to excitotoxic cell loss. Therefore the neuroprotective potential of the kainate receptor antagonist UBP310 in animal models of PD was investigated in this study. Stereological quantification revealed administration of UBP310 significantly increased survival of dopaminergic and total neuron populations in the substantia nigra pars compacta in the acute MPTP mouse model of PD. In contrast, UBP310 was unable to rescue MPTP-induced loss of dopamine levels or dopamine transporter expression in the striatum. Furthermore, deletion of GluK1, GluK2 or GluK3 had no effect on MPTP or UBP310-mediated effects across all measures. Interestingly, UBP310 did not attenuate cell loss in the midbrain induced by intrastriatal 6-OHDA toxicity. These results indicate UBP310 provides neuroprotection in the midbrain against MPTP neurotoxicity that is not dependent on specific kainate receptor subunits.


Asunto(s)
Alanina/análogos & derivados , Neuronas Dopaminérgicas/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Trastornos Parkinsonianos/metabolismo , Timina/análogos & derivados , Alanina/farmacología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/metabolismo , Receptores de Ácido Kaínico/metabolismo , Timina/farmacología , Receptor de Ácido Kaínico GluK2 , Receptor Kainato GluK3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...