Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; : e0174624, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980038

RESUMEN

The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4+ T-cell counts. Previously, we deleted three chitin deacetylase genes from Cryptococcus neoformans to create a chitosan-deficient, avirulent strain, designated as cda1∆2∆3∆, which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8+ T cells. In contrast, protection was lost in mice lacking α/ß T cells or CD4+ T cells. Moreover, CD4+ T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4+ T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4+ T cells after vaccination but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in interferon-γ (IFNγ), tumor necrosis factor alpha (TNFα), or interleukin (IL)-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4+ T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8+ T cells are dispensable, IFNγ and CD4+ T cells have overlapping roles in generating protective immunity prior to cda1∆2∆3∆ vaccination. However, once vaccinated, protection becomes less dependent on CD4+ T cells, suggesting a strategy for vaccinating HIV+ persons prior to loss of CD4+ T cells. IMPORTANCE: The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4+ T-cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans, designated as cda1∆2∆3∆. When used as a vaccine, cda1∆2∆3∆ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8+ T cells were dispensible, protection was lost in mice genetically deficient in CD4+ T cells and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4+ T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4+ T cells following vaccination, suggesting a strategy to protect persons who are at risk of future CD4+ T-cell dysfunction.

2.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915489

RESUMEN

The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4 + T cell counts. Previously, we deleted three chitin deacetylase genes from C. neoformans to create a chitosan-deficient, avirulent strain, designated cda1Δ2Δ3Δ which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8 + T cells. In contrast, protection was lost in mice lacking α/ß T cells or CD4 + T cells. Moreover, CD4 + T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4 + T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4 + T cells after vaccination, but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in IFNγ, TNFα, or IL-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4 + T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8 + T cells are dispensable, IFNγ and CD4 + T cells have overlapping roles in generating protective immunity prior to cda1Δ2Δ3Δ vaccination. However, once vaccinated, protection becomes less dependent on CD4 + T cells, suggesting a strategy for vaccinating HIV + persons prior to loss of CD4 + T cells. Importance: The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4 + T cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated cda1Δ2Δ3Δ . When used as a vaccine, cda1Δ2Δ3Δ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8 + T cells were dispensible, protection was lost in mice genetically deficient in CD4 + T cells, and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4 + T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4 + T cells following vaccination, suggesting a strategy to protect persons who are at risk for future CD4 + T cell dysfunction.

3.
Methods Mol Biol ; 2775: 329-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758327

RESUMEN

The cell wall of the fungal pathogens Cryptococcus neoformans and C. gattii is critical for cell wall integrity and signaling external threats to the cell, allowing it to adapt and grow in a variety of changing environments. Chitin is a polysaccharide found in the cell walls of fungi that is considered to be essential for fungal survival. Chitosan is a polysaccharide derived from chitin via deacetylation that is also essential for cryptococcal cell wall integrity, fungal pathogenicity, and virulence. Cryptococcus has evolved mechanisms to regulate the amount of chitin and chitosan during growth under laboratory conditions or during mammalian infection. Therefore, levels of chitin and chitosan have been useful phenotypes to define mutant Cryptococcus strains. As a result, we have developed and/or refined various qualitative and quantitative methods for measuring chitin and chitosan. These techniques include those that use fluorescent probes that are known to bind to chitin (e.g., calcofluor white and wheat germ agglutinin), as well as those that preferentially bind to chitosan (e.g., eosin Y and cibacron brilliant red 3B-A). Techniques that enhance the localization and quantification of chitin and chitosan in the cell wall include (i) fluorescence microscopy, (ii) flow cytometry, (iii) and spectrofluorometry. We have also modified two highly selective biochemical methods to measure cellular chitin and chitosan content: the Morgan-Elson and the 3-methyl-2-benzothiazolone hydrazine hydrochloride (MBTH) assays, respectively.


Asunto(s)
Pared Celular , Quitina , Quitosano , Quitina/metabolismo , Quitina/química , Quitina/análisis , Quitosano/química , Quitosano/metabolismo , Pared Celular/metabolismo , Pared Celular/química , Cryptococcus neoformans/metabolismo , Colorantes Fluorescentes/química , Cryptococcus/metabolismo , Microscopía Fluorescente/métodos
4.
Methods Mol Biol ; 2775: 393-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758333

RESUMEN

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Asunto(s)
Quitosano , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Animales , Quitosano/química , Ratones , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/genética , Vacunas Fúngicas/administración & dosificación , Criptococosis/inmunología , Criptococosis/prevención & control , Criptococosis/microbiología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Vacunación/métodos , Femenino , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-37538303

RESUMEN

Introduction: Cryptococcus neoformans is a basidiomycete fungus that can cause meningoencephalitis, especially in immunocompromised patients. Cryptococcus grows in many different media, although little attention has been paid to the role of growth conditions on the cryptococcal cell wall or on virulence. Objective: The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response. Methods: Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, C. neoformans was grown in either YPD or YNB, which were either left unbuffered or buffered to pH 7 with MOPS. These cells were then labeled with cell wall-specific fluorescent probes to determine the amounts of various cell wall components. In addition, these cells were employed in animal virulence studies using the murine inhalation model of infection. Results: We observed that the growth of wild-type C. neoformans KN99 significantly changes the pH of unbuffered media during growth. It raises the pH to 8.0 when grown in unbuffered YPD but lowers the pH to 2.0 when grown in unbuffered YNB (YNB-U). Importantly, the composition of the cell wall was substantially impacted by growth in different media. Cells grown in YNB-U exhibited a 90% reduction in chitosan, the deacetylated form of chitin, compared with cells grown in YPD. The decrease in pH and chitosan in the YNB-U-grown cells was associated with a significant increase in some pathogen-associated molecular patterns on the surface of cells compared with cells grown in YPD or YNB, pH 7. This altered cell wall architecture resulted in a significant reduction in virulence when tested using a murine model of infection. Furthermore, when heat-killed cells were used as the inoculum, KN99 cells grown in YNB-U caused an aberrant hyper-inflammatory response in the lungs, resulting in rapid animal death. In contrast, heat-killed KN99 cells grown in YNB, pH 7, caused little to no inflammatory response in the host lung, but, when used as a vaccine, they conferred a robust protective response against a subsequent challenge infection with the virulent KN99 cells. Conclusion: These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of the C. neoformans cell wall, as well as their impact on fungal virulence and the host response.

6.
mSphere ; 7(4): e0013422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35758672

RESUMEN

The fungal pathogen Cryptococcus neoformans causes up to 278 000 infections each year globally, resulting in up to 180,000 deaths annually, mostly impacting immunocompromised people. Therapeutic options for C. neoformans infections are very limited. Caspofungin, a member of the echinocandin class of antifungals, is generally well tolerated but clinically ineffective against C. neoformans. We sought to identify biological processes that can be targeted to render the cell more susceptible to echinocandins by screening the available libraries of gene deletion mutants made in the KN99α background for caspofungin sensitivity. We adapted a Candida albicans fungal biofilm assay for the growth characteristics of C. neoformans and systematically screened 4,030 individual gene deletion mutants in triplicate plate assays. We identified 25 strains that showed caspofungin sensitivity. We followed up with a dose dependence assay, and 17 of the 25 were confirmed sensitive, 5 of which were also sensitive in an agar plate assay. We made new deletion mutant strains for four of these genes: CFT1, encoding an iron transporter; ERG4, encoding a sterol desaturase; MYO1, encoding a myosin heavy chain; and YSP2, encoding a sterol transporter. All were more sensitive to membrane stress and showed significantly increased sensitivity to caspofungin at higher temperatures. Surprisingly, none showed any obvious cell wall defects such as would be expected for caspofungin-sensitive strains. Our microscopy analyses suggested that loss of membrane integrity contributed to the caspofungin sensitivity, either by allowing more caspofungin to enter or remain in the cell or by altering the location or orientation of the enzyme target to render it more susceptible to inhibition. IMPORTANCE The intrinsic resistance of Cryptococcus neoformans to the cell wall inhibitor caspofungin limits the available therapies for treating cryptococcal infections. We screened a collection of more than 4,000 gene deletion strains for altered caspofungin sensitivity to identify biological processes that could be targeted to render the cell more susceptible to caspofungin. We identified multiple genes with an effect on caspofungin susceptibility and found that they were associated with altered membrane permeability rather than the expected cell wall defects. This suggests that targeting these genes or other genes affecting membrane permeability is a viable path for developing novel therapies for treating this global fungal pathogen.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Caspofungina/farmacología , Pared Celular/metabolismo , Equinocandinas/farmacología , Esteroles
7.
Cell Surf ; 7: 100066, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34712865

RESUMEN

Chitosan, a deacetylated form of chitin, is required for the virulence of Cryptococcus neoformans. There are three chitin deacetylase genes (CDA) that are essential for chitosan production, and deletion of all three genes results in the absence of chitosan, loss of virulence, and induction of a protective host response when used as a vaccine. Cda1 plays a major role in deacetylating chitin during pulmonary infection of CBA/J mice. Inoculation with the cda1Δ strain did not lead to a lethal infection. However, the infection was not cleared. The persistence of the fungus in the host suggests that chitin is still being deacetylated by Cda2 and/or Cda3. To test this hypothesis, we subjected strains deleted of two CDA genes to fungal virulence in CBA/J, C57BL/6 and BALB/c and found that cda1Δcda2Δ was avirulent in all mouse lines, as evidenced by its complete clearance. Consistent with the major role of Cda1 in CBA/J, we found that cda2Δcda3Δ was as virulent as its wild-type progenitor KN99. On the other hand, cda1Δcda3Δ displayed virulence comparable to that of cda1Δ. The virulence of each mutant correlates with the amount of chitosan produced when grown under host-mimicking culture conditions. In addition, the avirulence of cda1Δcda2Δ was followed by the induction of a protective immune response in C57BL/6 and CBA/J mice, when a live or heat-killed form of the mutant was used as a vaccine respectively. Taken together, these data imply that, in C. neoformans, coordinated activity of both Cda1 and Cda2 is essential for mediating fungal virulence.

8.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071275

RESUMEN

Cryptococcus neoformans infections are significant causes of morbidity and mortality among AIDS patients and the third most common invasive fungal infection in organ transplant recipients. One of the main interfaces between the fungus and the host is the fungal cell wall. The cryptococcal cell wall is unusual among human-pathogenic fungi in that the chitin is predominantly deacetylated to chitosan. Chitosan-deficient strains of C. neoformans were found to be avirulent and rapidly cleared from the murine lung. Moreover, infection with a chitosan-deficient C. neoformans strain lacking three chitin deacetylases (cda1Δcda2Δcda3Δ) was found to confer protective immunity to a subsequent challenge with a virulent wild-type counterpart. In addition to the chitin deacetylases, it was previously shown that chitin synthase 3 (Chs3) is also essential for chitin deacetylase-mediated formation of chitosan. Mice inoculated with the chs3Δ strain at a dose previously shown to induce protection with the cda1Δcda2Δcda3Δ strain die within 36 h after installation of the organism. Mortality was not dependent on viable fungi, as mice inoculated with a heat-killed preparation of the chs3Δ strain died at the same rate as mice inoculated with a live chs3Δ strain, suggesting that the rapid onset of death was host mediated, likely caused by an overexuberant immune response. Histology, cytokine profiling, and flow cytometry indicate a massive neutrophil influx in the mice inoculated with the chs3Δ strain. Mice depleted of neutrophils survived chs3Δ inoculation, indicating that death was neutrophil mediated. Altogether, these studies lead us to conclude that Chs3, along with chitosan, plays critical roles in dampening cryptococcus-induced host inflammatory responses.IMPORTANCECryptococcus neoformans is the most common disseminated fungal pathogen in AIDS patients, resulting in ∼200,000 deaths each year. There is a pressing need for new treatments for this infection, as current antifungal therapy is hampered by toxicity and/or the inability of the host's immune system to aid in resolution of the disease. An ideal target for new therapies is the fungal cell wall. The cryptococcal cell wall is different from the cell walls of many other pathogenic fungi in that it contains chitosan. Strains that have decreased chitosan are less pathogenic and strains that are deficient in chitosan are avirulent and can induce protective responses. In this study, we investigated the host responses to a chs3Δ strain, a chitosan-deficient strain, and found that mice inoculated with the chs3Δ strain all died within 36 h and that death was associated with an aberrant hyperinflammatory immune response driven by neutrophils, indicating that chitosan is critical in modulating the immune response to Cryptococcus.


Asunto(s)
Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Quitina/metabolismo , Criptococosis/inmunología , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Inflamación/inmunología , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Amidohidrolasas , Animales , Proteínas Adaptadoras de Señalización CARD , Pared Celular/metabolismo , Quimiocinas/metabolismo , Quitosano/inmunología , Criptococosis/microbiología , Criptococosis/mortalidad , Cryptococcus neoformans/patogenicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide , Neutrófilos/inmunología , Transcriptoma
9.
mBio ; 10(6)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848271

RESUMEN

Cryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immunocompromising conditions. Current antifungals are suboptimal to treat this disease; therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall and is required for survival in the mammalian host and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis. To identify these compounds, we developed a robust and novel cell-based flow cytometry screening method to identify small-molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans We used flow cytometry-based counterscreens and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits. One of the confirmed hits that reduced chitosan content was the aminoalkylindole BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein-coupled receptor Gpr4 and, via the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis and could lead to potential novel therapeutics against C. neoformansIMPORTANCECryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungi from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of the cryptococcal cell wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans Two of these compounds were confirmed using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan biosynthesis in C. neoformans and validates that this screening approach could be used to find potential antifungal agents.


Asunto(s)
Quitosano/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Indometacina/análogos & derivados , Modelos Biológicos , Morfolinas/farmacología , Transducción de Señal/efectos de los fármacos , Fenómenos Químicos , Descubrimiento de Drogas , Indometacina/química , Indometacina/farmacología , Estructura Molecular , Morfolinas/química , Receptores Acoplados a Proteínas G/metabolismo
10.
mSphere ; 4(5)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597720

RESUMEN

Cryptococcus gattii R265 is a hypervirulent fungal strain responsible for the recent outbreak of cryptococcosis in Vancouver Island of British Columbia in Canada. It differs significantly from Cryptococcus neoformans in its natural environment, its preferred site in the mammalian host, and its pathogenesis. Our previous studies of C. neoformans have shown that the presence of chitosan, the deacetylated form of chitin, in the cell wall attenuates inflammatory responses in the host, while its absence induces robust immune responses, which in turn facilitate clearance of the fungus and induces a protective response. The results of the present investigation reveal that the cell wall of C. gattii R265 contains a two- to threefold larger amount of chitosan than that of C. neoformans The genes responsible for the biosynthesis of chitosan are highly conserved in the R265 genome; the roles of the three chitin deacetylases (CDAs) have, however, been modified. To deduce their roles, single and double CDA deletion strains and a triple CDA deletion strain were constructed in a R265 background and were subjected to mammalian infection studies. Unlike C. neoformans where Cda1 has a discernible role in fungal pathogenesis, in strain R265, Cda3 is critical for virulence. Deletion of either CDA3 alone or in combination with another CDA (cda1Δ3Δ or cda2Δ3Δ) or both (cda1Δ2Δ3Δ) rendered the fungus avirulent and cleared from the infected host. Moreover, the cda1Δ2Δ3Δ strain of R265 induced a protective response to a subsequent infection with R265. These studies begin to illuminate the regulation of chitosan biosynthesis of C. gattii and its subsequent effect on fungal virulence.IMPORTANCE The fungal cell wall is an essential organelle whose components provide the first line of defense against host-induced antifungal activity. Chitosan is one of the carbohydrate polymers in the cell wall that significantly affects the outcome of host-pathogen interaction. Chitosan-deficient strains are avirulent, implicating chitosan as a critical virulence factor. C. gattii R265 is an important fungal pathogen of concern due to its ability to cause infections in individuals with no apparent immune dysfunction and an increasing geographical distribution. Characterization of the fungal cell wall and understanding the contribution of individual molecules of the cell wall matrix to fungal pathogenesis offer new therapeutic avenues for intervention. In this report, we show that the C. gattii R265 strain has evolved alternate regulation of chitosan biosynthesis under both laboratory growth conditions and during mammalian infection compared to that of C. neoformans.


Asunto(s)
Amidohidrolasas/genética , Quitosano/metabolismo , Cryptococcus gattii/metabolismo , Cryptococcus gattii/patogenicidad , Proteínas Fúngicas/genética , Amidohidrolasas/metabolismo , Animales , Pared Celular/química , Pared Celular/inmunología , Criptococosis/microbiología , Cryptococcus gattii/genética , Femenino , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
mBio ; 9(6)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459196

RESUMEN

Chitin is an essential component of the cell wall of Cryptococcus neoformans conferring structural rigidity and integrity under diverse environmental conditions. Chitin deacetylase genes encode the enyzmes (chitin deacetylases [Cdas]) that deacetylate chitin, converting it to chitosan. The functional role of chitosan in the fungal cell wall is not well defined, but it is an important virulence determinant of C. neoformans Mutant strains deficient in chitosan are completely avirulent in a mouse pulmonary infection model. C. neoformans carries genes that encode three Cdas (Cda1, Cda2, and Cda3) that appear to be functionally redundant in cells grown under vegetative conditions. Here we report that C. neoformans Cda1 is the principal Cda responsible for fungal pathogenesis. Point mutations were introduced in the active site of Cda1 to generate strains in which the enzyme activity of Cda1 was abolished without perturbing either its stability or localization. When used to infect CBA/J mice, Cda1 mutant strains produced less chitosan and were attenuated for virulence. We further demonstrate that C. neoformans Cda genes are transcribed differently during a murine infection from what has been measured in vitroIMPORTANCECryptococcus neoformans is unique among fungal pathogens that cause disease in a mammalian host, as it secretes a polysaccharide capsule that hinders recognition by the host to facilitate its survival and proliferation. Even though it causes serious infections in immunocompromised hosts, reports of infection in hosts that are immunocompetent are on the rise. The cell wall of a fungal pathogen, its synthesis, composition, and pathways of remodelling are attractive therapeutic targets for the development of fungicides. Chitosan, a polysaccharide in the cell wall of C. neoformans is one such target, as it is critical for pathogenesis and absent in the host. The results we present shed light on the importance of one of the chitin deacetylases that synthesize chitosan during infection and further implicates chitosan as being a critical factor for the pathogenesis of C. neoformans.


Asunto(s)
Amidohidrolasas/metabolismo , Quitina/metabolismo , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/metabolismo , Amidohidrolasas/genética , Animales , Criptococosis/microbiología , Cryptococcus neoformans/genética , Femenino , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Ratones , Ratones Endogámicos CBA , Mutación Puntual , Virulencia , Factores de Virulencia/genética
12.
Fungal Genet Biol ; 108: 13-25, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28870457

RESUMEN

C. neoformans is an encapsulated fungal pathogen with defined asexual and sexual life cycles. Due to the availability of genetic and molecular tools for its manipulation, it has become a model organism for studies of fungal pathogens, even though it lacks a reliable system for maintaining DNA fragments as extrachromosomal plasmids. To compensate for this deficiency, we identified a genomic gene-free intergenic region where heterologous DNA could be inserted by homologous recombination without adverse effects on the phenotype of the recipient strain. Since such a site in the C. neoformans genome at a different location has been named previously as "safe haven", we named this locus second safe haven site (SH2). Insertion of DNA into this site in the genome of the KN99 congenic strain pair caused minimal change in the growth of the engineered strain under a variety of in vitro and in vivo conditions. We exploited this 'safe' locus to create a genetically stable highly fluorescent strain expressing mCherry protein (KN99mCH); this strain closely resembled its wild-type parent (KN99α) in growth under a variety of in vitro stress conditions and in the expression of virulence traits. The efficiency of phagocytosis and the proliferation of KN99mCH inside human monocyte-derived macrophages were comparable to those of KN99α, and the engineered strain showed the expected organ dissemination after inoculation, although there was a slight reduction in virulence. The mCherry fluorescence allowed us to measure specific association of cryptococci with leukocytes in the lungs and mediastinal lymph nodes of infected animals and, for the first-time, to assess their live/dead status in vivo. These results highlight the utility of KN99mCH for elucidation of host-pathogen interactions in vivo. Finally, we generated drug-resistant KN99 strains of both mating types that are marked at the SH2 locus with a specific drug resistant gene cassette; these strains will facilitate the generation of mutant strains by mating.


Asunto(s)
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Proteínas Luminiscentes/genética , Animales , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , ADN de Hongos , Femenino , Fluorescencia , Técnicas de Transferencia de Gen , Genes Reporteros , Ratones , Ratones Endogámicos CBA , Mutagénesis Insercional , Fenotipo , Ingeniería de Proteínas , Especificidad de la Especie , Transcripción Genética , Proteína Fluorescente Roja
13.
mBio ; 7(3)2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27165801

RESUMEN

UNLABELLED: Cryptococcus neoformans is a major opportunistic fungal pathogen that causes fatal meningoencephalitis in immunocompromised individuals and is responsible for a large proportion of AIDS-related deaths. The fungal cell wall is an essential organelle which undergoes constant modification during various stages of growth and is critical for fungal pathogenesis. One critical component of the fungal cell wall is chitin, which in C. neoformans is predominantly deacetylated to chitosan. We previously reported that three chitin deacetylase (CDA) genes have to be deleted to generate a chitosan-deficient C. neoformans strain. This cda1Δ2Δ3Δ strain was avirulent in mice, as it was rapidly cleared from the lungs of infected mice. Here, we report that clearance of the cda1Δ2Δ3Δ strain was associated with sharply spiked concentrations of proinflammatory molecules that are known to be critical mediators of the orchestration of a protective Th1-type adaptive immune response. This was followed by the selective enrichment of the Th1-type T cell population in the cda1Δ2Δ3Δ strain-infected mouse lung. Importantly, this response resulted in the development of robust protective immunity to a subsequent lethal challenge with a virulent wild-type C. neoformans strain. Moreover, protective immunity was also induced in mice vaccinated with heat-killed cda1Δ2Δ3Δ cells and was effective in multiple mouse strains. The results presented here provide a strong framework to develop the cda1Δ2Δ3Δ strain as a potential vaccine candidate for C. neoformans infection. IMPORTANCE: The most commonly used anticryptococcal therapies include amphotericin B, 5-fluorocytosine, and fluconazole alone or in combination. Major drawbacks of these treatment options are their limited efficacy, poor availability in limited resource areas, and potential toxicity. The development of antifungal vaccines and immune-based therapeutic interventions is promising and an attractive alternative to chemotherapeutics. Currently, there are no fungal vaccines in clinical use. This is the first report of a C. neoformans deletion strain with an avirulent phenotype in mice exhibiting protective immunity when used as a vaccine after heat inactivation, although other strains that overexpress fungal or murine proteins have recently been shown to induce a protective response. The data presented here demonstrate the potential for developing the avirulent cda1Δ2Δ3Δ strain into a vaccine-based therapy to treat C. neoformans infection.


Asunto(s)
Quitosano , Criptococosis/inmunología , Criptococosis/prevención & control , Cryptococcus neoformans/química , Cryptococcus neoformans/inmunología , Vacunas Fúngicas/inmunología , Amidohidrolasas/genética , Animales , Pared Celular/química , Criptococosis/microbiología , Cryptococcus neoformans/genética , Citocinas/biosíntesis , Citocinas/inmunología , Vacunas Fúngicas/administración & dosificación , Vacunas Fúngicas/genética , Calor , Inmunidad Celular , Pulmón/inmunología , Pulmón/microbiología , Ratones , Mutación , Células TH1/inmunología
14.
mBio ; 5(4)2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25118241

RESUMEN

UNLABELLED: Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely, PKC1, BCK1, MKK2, and MPK1 results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions of BCK1, MKK2, and MPK1 compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis. IMPORTANCE: Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall are primarily controlled by the cell wall integrity (CWI) signaling pathway. In this study, we demonstrate that deletion of any of three core kinases in the CWI pathway impacts not only the cell wall but also the amount of surface capsule. Deletion of any of the kinases results in significantly reduced cellular cyclic AMP (cAMP) levels, and addition of exogenous cAMP rescues the capsule defect and some cell wall defects, supporting a direct role for the CWI pathway in regulation of capsule in conjunction with the cAMP/protein kinase A pathway.


Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Pared Celular/genética , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Cápsulas Fúngicas/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica
15.
PLoS Genet ; 10(4): e1004261, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743168

RESUMEN

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Asunto(s)
Cryptococcus neoformans/genética , Genoma Fúngico/genética , ARN de Hongos/genética , Transcriptoma/genética , Virulencia/genética , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Intrones/genética
16.
Mol Microbiol ; 90(3): 630-648, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23998805

RESUMEN

Mechanisms of oxidative stress resistance are crucial virulence factors for survival and proliferation of fungal pathogens within the human host. In this study we have identified and functionally characterized the role of sulphiredoxin, Srx1, in oxidative stress resistance of Cryptococcus neoformans causing fungal meningoencephalitis and regulation of peroxiredoxins, Tsa1 and Tsa3, and thioredoxins, Trx1 and Trx2. The C. neoformans HOG (High Osmolarity Glycerol response) pathway was essential for the transcriptional regulation of SRX1 under peroxide stress conditions. A gene deletion study revealed that Srx1 was required for cells to counteract peroxide stress, but not other oxidative damaging agents. HOG1 was found to be essential for the induction of adaptive response to peroxide stress with concurrent repression of ergosterol biosynthesis in an SRX1-independent manner. Consistent with this, phosphorylation of C. neoformans Hog1 was modulated by both low and high doses of exogenous hydrogen peroxide treatment. Immunoblot analysis using the C. neoformans Tsa1 specific antibody revealed that both Srx1 and Trx1 were essential for recycling of oxidized Tsa1. In addition to its role in peroxide sensing and response C. neoformans Srx1 was also found to be required for a peroxiredoxin-independent function in promoting fungicide-dependent cell swelling and growth arrest. Finally we showed the importance of C. neoformans Srx1 in fungal pathogenesis by demonstrating its requirement for full virulence using a mouse infection model.


Asunto(s)
Antiinfecciosos Locales/farmacología , Cryptococcus neoformans/patogenicidad , Ergosterol/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/farmacología , Peroxirredoxinas/metabolismo , Animales , Criptococosis , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Dioxoles/farmacología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Humanos , Ratones , Ratones Endogámicos CBA , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos
17.
Eukaryot Cell ; 12(1): 118-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159519

RESUMEN

To initiate and establish infection in mammals, the opportunistic fungal pathogen Cryptococcus neoformans must survive and thrive upon subjection to host temperature. Primary maintenance of cell integrity is controlled through the protein kinase C1 (PKC1) signaling pathway, which is regulated by a Rho1 GTPase in Saccharomyces cerevisiae. We identified three C. neoformans Rho GTPases, Rho1, Rho10, and Rho11, and have begun to elucidate their role in growth and activation of the PKC1 pathway in response to thermal stress. Western blot analysis revealed that heat shock of wild-type cells resulted in phosphorylation of Mpk1 mitogen-activated protein kinase (MAPK). Constitutive activation of Rho1 caused phosphorylation of Mpk1 independent of temperature, indicating its role in pathway regulation. A strain with a deletion of RHO10 also displayed this constitutive Mpk1 phosphorylation phenotype, while one with a deletion of RHO11 yielded phosphorylation similar to that of wild type. Surprisingly, like a rho10Δ strain, a strain with a deletion of both RHO10 and RHO11 displayed temperature sensitivity but mimicked wild-type phosphorylation, which suggests that Rho10 and Rho11 have coordinately regulated functions. Heat shock-induced Mpk1 phosphorylation also required the PKC1 pathway kinases Bck1 and Mkk2. However, Pkc1, thought to be the major regulatory kinase of the cell integrity pathway, was dispensable for this response. Together, our results argue that Rho proteins likely interact via downstream components of the PKC1 pathway or by alternative pathways to activate the cell integrity pathway in C. neoformans.


Asunto(s)
Cryptococcus neoformans/enzimología , Proteínas Fúngicas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Pared Celular/enzimología , Pared Celular/fisiología , Secuencia Conservada , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Técnicas de Inactivación de Genes , Respuesta al Choque Térmico , Sistema de Señalización de MAP Quinasas , Melaninas/biosíntesis , Viabilidad Microbiana , Proteínas Quinasas Activadas por Mitógenos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estrés Oxidativo , Fenotipo , Fosforilación , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...