Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 7(6): e0035022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36326242

RESUMEN

Toxoplasma gondii is a single-celled parasitic eukaryote that evolved to successfully propagate in any nucleated cell. As with any other eukaryote, its life cycle is regulated by signaling pathways controlled by kinases and phosphatases. T. gondii encodes an atypical bacterial-like phosphatase absent from mammalian genomes, named Shelph, after its first identification in the psychrophilic bacterium Schewanella sp. Here, we demonstrate that Toxoplasma Shelph is an active phosphatase localized in the parasite endoplasmic reticulum. The phenotyping of a shelph knockout (KO) line showed a minor impairment in invasion on human fibroblasts, while the other steps of the parasite lytic cycle were not affected. In contrast with Plasmodium ortholog Shelph1, this invasion deficiency was not correlated with any default in the biogenesis of secretory organelles. However, Shelph-KO parasites displayed a much-pronounced defect in virulence in vivo. These phenotypes could be rescued by genetic complementation, thus supporting an important function for Shelph in the context of a natural infection. IMPORTANCE Toxoplasma gondii belongs to the Apicomplexa phylum, which comprises more than 5,000 species, among which is Plasmodium falciparum, the notorious agent of human malaria. Intriguingly, the Apicomplexa genomes encode at least one phosphatase closely related to the bacterial Schewanella phosphatase, or Shelph. To better understand the importance of these atypical bacterial enzymes in eukaryotic parasites, we undertook the functional characterization of T. gondii Shelph. Our results uncovered its subcellular localization and its enzymatic activity, revealed its subtle involvement during the tachyzoite invasion step of the lytic cycle, and more importantly, highlighted a critical requirement of this phosphatase for parasite propagation in mice. Overall, this study revealed an unexpected role for T. gondii Shelph in the maintenance of parasite virulence in vivo.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Ratones , Animales , Toxoplasma/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Virulencia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos
2.
Annu Rev Microbiol ; 76: 619-640, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671531

RESUMEN

Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates.


Asunto(s)
Parásitos , Toxoplasma , Animales , Interacciones Huésped-Parásitos , Orgánulos/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
3.
Nat Commun ; 11(1): 3532, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669539

RESUMEN

Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum/enzimología , Proteína Fosfatasa 1/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Proliferación Celular , GMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Noqueados , Fosfatidilcolinas/química , Dominios Proteicos , Proteoma , Ubiquitina-Proteína Ligasas/metabolismo
4.
PLoS One ; 12(10): e0187073, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073264

RESUMEN

During the erythrocytic cycle of the malaria parasite Plasmodium falciparum, egress and invasion are essential steps finely controlled by reversible phosphorylation. In contrast to the growing number of kinases identified as key regulators, phosphatases have been poorly studied, and calcineurin is the only one identified so far to play a role in invasion. PfShelph2, a bacterial-like phosphatase, is a promising candidate to participate in the invasion process, as it was reported to be expressed late during the asexual blood stage and to reside within an apical compartment, yet distinct from rhoptry bulb, micronemes, or dense granules. It was also proposed to play a role in the control of the red blood cell membrane deformability at the end of the invasion process. However, genetic studies are still lacking to support this hypothesis. Here, we take advantage of the CRISPR-Cas9 technology to tag shelph2 genomic locus while retaining its endogenous regulatory regions. This new strain allows us to follow the endogenous PfShelph2 protein expression and location during asexual blood stages. We show that PfShelph2 apical location is also distinct from the rhoptry neck or exonemes. We further demonstrate PfShelph2 dispensability during the asexual blood stage by generating PfShelph2-KO parasites using CRISPR-Cas9 machinery. Analyses of the mutant during the course of the erythrocytic development indicate that there are no detectable phenotypic consequences of Pfshelph2 genomic deletion. As this lack of phenotype might be due to functional redundancy, we also explore the likelihood of PfShelph1 (PfShelph2 paralog) being a compensatory phosphatase. We conclude that despite its cyclic expression profile, PfShelph2 is a dispensable phosphatase during the Plasmodium falciparum asexual blood stage, whose function is unlikely substituted by PfShelph1.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Plasmodium falciparum/enzimología , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Eritrocitos/parasitología , Monoéster Fosfórico Hidrolasas/genética , Plasmodium falciparum/crecimiento & desarrollo
5.
Nat Microbiol ; 2(10): 1358-1366, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28848228

RESUMEN

Apicomplexan parasites are important pathogens of humans and domestic animals, including Plasmodium species (the agents of malaria) and Toxoplasma gondii, which is responsible for toxoplasmosis. They replicate within the cells of their animal hosts, to which they gain access using a unique parasite-driven invasion process. At the core of the invasion machine is a structure at the interface between the invading parasite and host cell called the moving junction (MJ) 1 . The MJ serves as both a molecular doorway to the host cell and an anchor point enabling the parasite to engage its motility machinery to drive the penetration of the host cell 2 , ultimately yielding a protective vacuole 3 . The MJ is established through self-assembly of parasite proteins at the parasite-host interface 4 . However, it is unknown whether host proteins are subverted for MJ formation. Here, we show that Toxoplasma parasite rhoptry neck proteins (RON2, RON4 and RON5) cooperate to actively recruit the host CIN85, CD2AP and the ESCRT-I components ALIX and TSG101 to the MJ during invasion. We map the interactions in detail and demonstrate that the parasite mimics and subverts conserved binding interfaces with remarkable specificity. Parasite mutants unable to recruit these host proteins show inefficient host cell invasion in culture and attenuated virulence in mice. This study reveals molecular mechanisms by which parasites subvert widely conserved host machinery to force highly efficient host cell access.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Expresión Génica , Vectores Genéticos , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Organismos Modificados Genéticamente , Mutación Puntual , Proteínas Protozoarias/genética , Proteínas Recombinantes , Células Sf9 , Toxoplasma/genética , Factores de Transcripción/metabolismo
6.
Nat Commun ; 5: 4098, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24934579

RESUMEN

Malaria and toxoplasmosis are infectious diseases caused by the apicomplexan parasites Plasmodium and Toxoplasma gondii, respectively. These parasites have developed an invasion mechanism involving the formation of a moving junction (MJ) that anchors the parasite to the host cell and forms a ring through which the parasite penetrates. The composition and the assembly of the MJ, and in particular the presence of protein AMA1 and its interaction with protein RON2 at the MJ, have been the subject of intense controversy. Here, using reverse genetics, we show that AMA1, a vaccine candidate, interacts with RON2 to maintain the MJ structural integrity in T. gondii and is subsequently required for parasite internalization. Moreover, we show that disruption of the AMA1 gene results in upregulation of AMA1 and RON2 homologues that cooperate to support residual invasion. Our study highlights a considerable complexity and molecular plasticity in the architecture of the MJ.


Asunto(s)
Antígenos de Protozoos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología , Antígenos de Protozoos/genética , Eliminación de Gen , Humanos , Modelos Moleculares , Unión Proteica , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad , Virulencia
7.
PLoS Pathog ; 8(6): e1002755, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737069

RESUMEN

Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.


Asunto(s)
Antígenos de Protozoos/química , Interacciones Huésped-Parásitos/fisiología , Proteínas de la Membrana/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/metabolismo , Membrana Celular/metabolismo , Cristalización , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/metabolismo , Resonancia por Plasmón de Superficie
8.
PLoS One ; 7(3): e32457, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427839

RESUMEN

Apicomplexan parasites secrete and inject into the host cell the content of specialized secretory organelles called rhoptries, which take part into critical processes such as host cell invasion and modulation of the host cell immune response. The rhoptries are structurally and functionally divided into two compartments. The apical duct contains rhoptry neck (RON) proteins that are conserved in Apicomplexa and are involved in formation of the moving junction (MJ) driving parasite invasion. The posterior bulb contains rhoptry proteins (ROPs) unique to an individual genus and, once injected in the host cell act as effector proteins to co-opt host processes and modulate parasite growth and virulence. We describe here two new RON proteins of Toxoplasma gondii, RON9 and RON10, which form a high molecular mass complex. In contrast to the other RONs described to date, this complex was not detected at the MJ during invasion and therefore was not associated to the MJ complex RON2/4/5/8. Disruptions of either RON9 or RON10 gene leads to the retention of the partner in the ER followed by subsequent degradation, suggesting that the RON9/RON10 complex formation is required for proper sorting to the rhoptries. Finally, we show that the absence of RON9/RON10 has no significant impact on the morphology of rhoptry, on the invasion and growth in fibroblasts in vitro or on virulence in vivo. The conservation of RON9 and RON10 in Coccidia and Cryptosporidia suggests a specific relation with development in intestinal epithelial cells.


Asunto(s)
Complejos Multiproteicos/genética , Fenotipo , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad , Animales , Anticuerpos Monoclonales/metabolismo , Secuencia de Bases , Western Blotting , Cromatografía de Afinidad , Biología Computacional , Microscopía por Crioelectrón , Cartilla de ADN/genética , ADN Complementario/genética , Interacciones Huésped-Parásitos , Espectrometría de Masas , Ratones , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Protozoarias/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Toxoplasma/metabolismo , Virulencia
9.
Science ; 333(6041): 463-7, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21778402

RESUMEN

Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Interacciones Huésped-Parásitos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Protozoarias/inmunología , Toxoplasma/química , Toxoplasma/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...