Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 40(1): 151-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21994436

RESUMEN

Interindividual variations in functions other than drug metabolism activity, remain poorly elucidated in human liver. In the present study, the whole transcriptome of several human hepatocyte populations and the differentiated human HepaRG cell line have been analyzed and compared, using oligonucleotide pangenomic microarrays. We show that, although the variation in the percentages of expressed genes did not exceed 14% among the primary human hepatocyte populations, huge interindividual differences in the transcript levels of many genes were observed. These genes were related to various functions; in addition to drug metabolism, they mainly concerned carbohydrate, amino acid, and lipid metabolism. HepaRG cells expressed from 81 to 92% of the genes active in human hepatocytes and, in addition, a specific gene subset mainly related to their transformed status, some chromosomal abnormalities, and the presence of primitive biliary epithelial cells. Of interest, a relationship was evidenced between abnormal basal expression levels of some target genes and their corresponding previously reported fold changes in one of four human hepatocyte populations treated with the hepatotoxic drug troglitazone and not with other nonhepatotoxic peroxisome proliferator-activated receptor agonists (PLoS One 6:e18816, 2011). Taken together, our results support the view that HepaRG cells express most of the genes active in primary human hepatocytes and show that expression of most human hepatic genes can quantitatively greatly vary among individuals, thereby contributing to explain the huge interindividual variability in susceptibility to drugs and other environmental factors.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Variación Genética/fisiología , Hepatocitos/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Humanos
2.
PLoS One ; 6(4): e18816, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21533120

RESUMEN

BACKGROUND: Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. METHODOLOGY/PRINCIPAL FINDINGS: Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. CONCLUSIONS/SIGNIFICANCE: This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients.


Asunto(s)
Perfilación de la Expresión Génica , Hepatocitos/metabolismo , PPAR alfa/agonistas , PPAR gamma/agonistas , Adenosina Trifosfato/metabolismo , Adulto , Western Blotting , Células Cultivadas , Análisis por Conglomerados , Humanos , Reacción en Cadena de la Polimerasa , Especies Reactivas de Oxígeno/metabolismo
3.
Toxicol Appl Pharmacol ; 249(1): 91-100, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20816883

RESUMEN

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are two of the most common heterocyclic aromatic amines (HAA) produced during cooking of meat, fish and poultry. Both HAA produce different tumor profiles in rodents and are suspected to be carcinogenic in humans. In order to better understand the molecular basis of HAA toxicity, we have analyzed gene expression profiles in the metabolically competent human HepaRG cells using pangenomic oligonucleotide microarrays, after either a single (24-h) or a repeated (28-day) exposure to 10 µM PhIP or MeIQx. The most responsive genes to both HAA were downstream targets of the arylhydrocarbon receptor (AhR): CYP1A1 and CYP1A2 after both time points and CYP1B1 and ALDH3A1 after 28 days. Accordingly, CYP1A1/1A2 induction in HAA-treated HepaRG cells was prevented by chemical inhibition or small interference RNA-mediated down-regulation of the AhR. Consistently, HAA induced activity of the CYP1A1 promoter, which contains a consensus AhR-related xenobiotic-responsive element (XRE). In addition, several other genes exhibited both time-dependent and compound-specific expression changes with, however, a smaller magnitude than previously reported for the prototypical AhR target genes. These changes concerned genes mainly related to cell growth and proliferation, apoptosis, and cancer. In conclusion, these results identify the AhR gene battery as the preferential target of PhIP and MeIQx in HepaRG cells and further support the hypothesis that intake of HAA in diet might increase human cancer risk.


Asunto(s)
Imidazoles/administración & dosificación , Quinoxalinas/administración & dosificación , Receptores de Hidrocarburo de Aril/biosíntesis , Receptores de Hidrocarburo de Aril/genética , Aminas/administración & dosificación , Aminas/toxicidad , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/toxicidad , Quinoxalinas/toxicidad
4.
Toxicol Appl Pharmacol ; 245(2): 256-63, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20307560

RESUMEN

Human exposure to heterocyclic aromatic amines (HAA) usually occurs through mixtures rather than individual compounds. However, the toxic effects and related mechanisms of co-exposure to HAA in humans remain unknown. We compared the effects of two of the most common HAA, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), individually or in combination, in the metabolically competent human hepatoma HepaRG cells. Various endpoints were measured including cytotoxicity, apoptosis, oxidative stress and DNA damage by the comet assay. Moreover, the effects of PhIP and/or MeIQx on mRNA expression and activities of enzymes involved in their activation and detoxification pathways were evaluated. After a 24h treatment, PhIP and MeIQx, individually and in combination, exerted differential effects on apoptosis, oxidative stress, DNA damage and cytochrome P450 (CYP) activities. Only PhIP induced DNA damage. It was also a stronger inducer of CYP1A1 and CYP1B1 expression and activity than MeIQx. In contrast, only MeIQx exposure resulted in a significant induction of CYP1A2 activity. The combination of PhIP with MeIQx induced an oxidative stress and showed synergistic effects on apoptosis. However, PhIP-induced genotoxicity was abolished by a co-exposure with MeIQx. Such an inhibitory effect could be explained by a significant decrease in CYP1A2 activity which is responsible for PhIP genotoxicity. Our findings highlight the need to investigate interactions between HAA when assessing risks for human health and provide new insights in the mechanisms of interaction between PhIP and MeIQx.


Asunto(s)
Imidazoles/toxicidad , Quinoxalinas/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Daño del ADN , Relación Dosis-Respuesta a Droga , Humanos , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena de la Polimerasa
5.
Toxicol In Vitro ; 23(3): 466-75, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19159669

RESUMEN

The use of in vitro human liver cell models is an attractive approach in toxicogenomic studies designed to analyze gene expression changes induced by a toxic chemical. However, in such studies, reliability, reproducibility and interlaboratory concordance of microarrays, as well as the choice of the most suitable cell model, remain a matter of debate. This work was aimed at evaluating the robustness of microarray technologies and the suitability of the highly differentiated human HepaRG cell line in the investigation of gene expression changes induced by a toxic compound in human liver. The influence of various experimental conditions including cell cultures grown at different test sites, different generations of microarrays, RNA analysis platforms and softwares, was tested on gene expression profiles induced by a 20h treatment with an 8mM concentration of phenobarbital as the toxic compound. As many as 1099 genes (p-value<0.01 and 1.5-fold-change), representing 74% and 30% of the signature genes detected with Agilent 22 and 44K pangenomic microarrays, respectively, were shown to be modulated in common in six independently performed experiments. The most modulated genes included both those known to be regulated by phenobarbital, such as cytochromes P450 and membrane transporters, and those involved in oxidative stress, inflammation and apoptosis, typifying a toxic insult. These data provide strong support for the use of a toxicogenomic approach for the in vitro prediction of chemical toxicity, and for the choice of human HepaRG cells as a promising model system for human hepatotoxicity testing.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hipnóticos y Sedantes/toxicidad , Fenobarbital/toxicidad , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipnóticos y Sedantes/clasificación , Hígado/efectos de los fármacos , Análisis por Micromatrices , Fenobarbital/clasificación , Análisis de Componente Principal , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Pruebas de Toxicidad
6.
Toxicol Appl Pharmacol ; 234(3): 345-60, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19084549

RESUMEN

Phenobarbital (PB) induces or represses a wide spectrum of genes in rodent liver. Much less is known about its effects in human liver. We used pangenomic cDNA microarrays to analyze concentration- and time-dependent gene expression profile changes induced by PB in the well-differentiated human HepaRG cell line. Changes in gene expression profiles clustered at specific concentration ranges and treatment times. The number of correctly annotated genes significantly modulated by at least three different PB concentration ranges (spanning 0.5 to 3.2 mM) at 20 h exposure amounted to 77 and 128 genes (p< or =0.01) at 2- and 1.8-fold filter changes, respectively. At low concentrations (0.5 and 1 mM), PB-responsive genes included the well-recognized CAR- and PXR-dependent responsive cytochromes P450 (CYP2B6, CYP3A4), sulfotransferase 2A1 and plasma transporters (ABCB1, ABCC2), as well as a number of genes critically involved in various metabolic pathways, including lipid (CYP4A11, CYP4F3), vitamin D (CYP24A1) and bile (CYP7A1 and CYP8B1) metabolism. At concentrations of 3.2 mM or higher after 20 h, and especially 48 h, increased cytotoxic effects were associated with disregulation of numerous genes related to oxidative stress, DNA repair and apoptosis. Primary human hepatocyte cultures were also exposed to 1 and 3.2 mM PB for 20 h and the changes were comparable to those found in HepaRG cells treated under the same conditions. Taken altogether, our data provide further evidence that HepaRG cells closely resemble primary human hepatocytes and provide new information on the effects of PB in human liver. These data also emphasize the importance of investigating dose- and time-dependent effects of chemicals when using toxicogenomic approaches.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Neoplasias Hepáticas/genética , Fenobarbital/farmacología , Adenosina Trifosfato/metabolismo , Carcinoma Hepatocelular/enzimología , Línea Celular Tumoral , Análisis por Conglomerados , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica/métodos , Hepatocitos/enzimología , Humanos , Neoplasias Hepáticas/enzimología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenobarbital/toxicidad , Análisis de Componente Principal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
7.
Toxicol Sci ; 96(2): 214-7, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17192442

RESUMEN

The in vitro micronucleus test is commonly used in the early stages of pharmaceutical development as a predictive tool for the regulatory mouse lymphoma assay or in vitro chromosome aberration test. The accumulated data from this assay leads to the suggestion that it could be used as an alternative to the chromosome aberration test or the mouse lymphoma assay in the regulatory genotoxicity battery. In this paper, we present the results of the in vitro micronucleus test on L5178Y mouse lymphoma cells with 25 compounds from Servier research and have compared these results to those obtained in the genotoxicity regulatory battery. All the negative compounds were also negative in the in vitro micronucleus assay. Among the 14 positive compounds, two of them, positive in the mouse lymphoma assay, were found negative in the in vitro micronucleus test. However, this apparent discordance was likely to be due to cytotoxicity- or high concentration-related false positive responses in the mouse lymphoma assay. In addition, we confirmed that the in vitro micronucleus assay is useful for detecting aneugens, especially, when cells in metaphasis and multinucleated cells are also scored and when cells are allowed to recover after the long treatment. On this series of compounds, the in vitro micronucleus assay showed high sensitivity and possibly a better specificity than the mouse lymphoma assay. Thus, the in vitro micronucleus assay was shown to be at least as adequate as the mouse lymphoma assay or the in vitro chromosome aberration test to be used in the standard genotoxicity battery.


Asunto(s)
Aberraciones Cromosómicas/efectos de los fármacos , Drogas en Investigación/toxicidad , Pruebas de Micronúcleos/métodos , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Linfoma/genética , Linfoma/patología , Ratones , Pruebas de Toxicidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...