Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088302

RESUMEN

Graft-versus-host disease (GvHD) is a life-threatening complication frequently occurring following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Since gut microbiota and regulatory T cells (Tregs) are believed to play roles in GvHD prevention, we investigated whether DP8a Tregs, which we have previously described to harbor a TCR-specificity for the gut commensal Faecalibacterium prausnitzii, could protect against GvHD, thereby linking microbiota and its effect on GvHD. We observed a decrease in CD73+ DP8α Treg frequency in allo-HSCT patients at 1-month post-transplantation, which was associated with aGvHD development at 1-month post-transplantation, as compared to aGvHD-free patients, without being correlated to hematological disease's relapse. Importantly, CD73 activity was shown to be critical for DP8αTreg suppressive function. Moreover, the frequency of host-reactive DP8α Tregs was also lower in aGvHD patients, as compared to aGvHD-free patients, which could embody a protective mechanism responsible for the maintenance of these cell subset in GvHD-free patients. We also showed that human DP8α Tregs protected mice against xeno-GvHD through limiting deleterious inflammation and preserving gut integrity. Altogether, these results demonstrated that human DP8α Tregs mediate aGvHD prevention in a CD73-dependent manner, likely through host-reactivity, advocating for the use of these cells for the development of innovative therapeutic strategies to preclude aGvHD-related inflammation.

2.
Oncoimmunology ; 13(1): 2376782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983599

RESUMEN

Immune checkpoint (IC) blockade and adoptive transfer of tumor-specific T-cells (ACT) are two major strategies to treat metastatic melanoma. Their combination can potentiate T-cell activation in the suppressive tumor microenvironment, but the autoimmune adverse effects associated with systemic injection of IC blockers persist with this strategy. ACT of tumor-reactive T-cells defective for IC expression would overcome this issue. For this purpose, PD-1 and TIGIT appear to be relevant candidates, because their co-expression on highly tumor-reactive lymphocytes limits their therapeutic efficacy within the tumor microenvironme,nt. Our study compares the consequences of PDCD1 or TIGIT genetic deletion on anti-tumor properties and T-cell fitness of melanoma-specific T lymphocytes. Transcriptomic analyses revealed down-regulation of cell cycle-related genes in PD-1KO T-cells, consistent with biological observations, whereas proliferative pathways were preserved in TIGITKO T-cells. Functional analyses showed that PD-1KO and TIGITKO T-cells displayed superior antitumor reactivity than their wild-type counterpart in vitro and in a preclinical melanoma model using immunodeficient mice. Interestingly, it appears that TIGITKO T-cells were more effective at inhibiting tumor cell proliferation in vivo, and persist longer within tumors than PD-1KO T-cells, consistent with the absence of impact of TIGIT deletion on T-cell fitness. Taken together, these results suggest that TIGIT deletion, over PD-1 deletion, in melanoma-specific T-cells is a compelling option for future immunotherapeutic strategies.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Receptores Inmunológicos , Animales , Ratones , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Melanoma/inmunología , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Eliminación de Gen , Microambiente Tumoral/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Humanos , Activación de Linfocitos/inmunología
3.
Cancers (Basel) ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290283

RESUMEN

Recent findings suggest that S100A4, a protein involved in communication between stromal cells and cancer cells, could be more involved than previously expected in cancer invasiveness. To investigate its cumulative value in the multistep process of the pathogenesis of malignant mesothelioma (MM), SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra), an advanced and robust technique of quantitative proteomics, was used to analyze a collection of 26 preneoplastic and neoplastic rat mesothelial cell lines and models of MM with increasing invasiveness. Secondly, proteomic and histological analyses were conducted on formalin-fixed paraffin-embedded sections of liver metastases vs. primary tumor, and spleen from tumor-bearing rats vs. controls in the most invasive MM model. We found that S100A4, along with 12 other biomarkers, differentiated neoplastic from preneoplastic mesothelial cell lines, and invasive vs. non-invasive tumor cells in vitro, and MM tumors in vivo. Additionally, S100A4 was the only protein differentiating preneoplastic mesothelial cell lines with sarcomatoid vs. epithelioid morphology in relation to EMT (epithelial-to-mesenchymal transition). Finally, S100A4 was the most significantly increased biomarker in liver metastases vs. primary tumor, and in the spleen colonized by MM cells. Overall, we showed that S100A4 was the only protein that showed increased abundance in all situations, highlighting its crucial role in all stages of MM pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...