Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISME J ; 9(5): 1208-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25423027

RESUMEN

Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a 'melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype-environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both.


Asunto(s)
Biodiversidad , Ecosistema , Estuarios , Eucariontes , Animales , Biología Computacional , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Geografía , Fenotipo , ARN Ribosómico 18S/genética , Salinidad , Reino Unido , Microbiología del Agua
2.
BMC Evol Biol ; 10: 389, 2010 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-21167065

RESUMEN

BACKGROUND: Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. RESULTS: Molecular data (18 S and 28 S rRNA) confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1) at trans-Atlantic sample sites. CONCLUSIONS: The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best) and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites), utilize additional genetic loci (e.g. mtDNA) that are informative at the species level, and apply high-throughput sequencing methods to fully assay community diversity. Finally, further molecular studies are needed to determine whether phylogeographic patterns observed in Enoplids are common across other ubiquitous marine groups (e.g. Chromadorida, Monhysterida).


Asunto(s)
Evolución Biológica , Enóplidos/clasificación , Filogenia , Filogeografía , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Enóplidos/genética , Funciones de Verosimilitud , Océanos y Mares , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
3.
BMC Evol Biol ; 10: 353, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21073704

RESUMEN

BACKGROUND: The subclass Enoplia (Phylum Nematoda) is purported to be the earliest branching clade amongst all nematode taxa, yet the deep phylogeny of this important lineage remains elusive. Free-living marine species within the order Enoplida play prominent roles in marine ecosystems, but previous molecular phylogenies have provided only the briefest evolutionary insights; this study aimed to firmly resolve internal relationships within the hyper-diverse but poorly understood Enoplida. In addition, we revisited the molecular framework of the Nematoda using a rigorous phylogenetic approach in order to investigate patterns of early splits amongst the oldest lineages (Dorylaimia and Enoplia). RESULTS: Morphological identifications, nuclear gene sequences (18S and 28S rRNA), and mitochondrial gene sequences (cox1) were obtained from marine Enoplid specimens representing 37 genera. The 18S gene was used to resolve deep splits within the Enoplia and evaluate the branching order of major clades in the nematode tree; multiple phylogenetic methods and rigorous empirical tests were carried out to assess tree topologies under different parameters and combinations of taxa. Significantly increased taxon sampling within the Enoplida resulted in a well-supported, robust phylogenetic topology of this group, although the placement of certain clades was not fully resolved. Our analysis could not unequivocally confirm the earliest splits in the nematode tree, and outgroup choice significantly affected the observed branching order of the Dorylaimia and Enoplia. Both 28S and cox1 were too variable to infer deep phylogeny, but provided additional insight at lower taxonomic levels. CONCLUSIONS: Analysis of internal relationships reveals that the Enoplia is split into two main clades, with groups consisting of terrestrial (Triplonchida) and primarily marine fauna (Enoplida). Five independent lineages were recovered within the Enoplida, containing a mixture of marine and terrestrial species; clade structure suggests that habitat transitions have occurred at least four times within this group. Unfortunately, we were unable to obtain a consistent or well-supported topology amongst early-branching nematode lineages. It appears unlikely that single-gene phylogenies using the conserved 18S gene will be useful for confirming the branching order at the base of the nematode tree-future efforts will require multi-gene analyses or phylogenomic methods.


Asunto(s)
Enóplidos/genética , Evolución Molecular , Filogenia , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Enóplidos/clasificación , Funciones de Verosimilitud , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN
4.
Nat Commun ; 1: 98, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20981026

RESUMEN

Biodiversity is of crucial importance for ecosystem functioning, sustainability and resilience, but the magnitude and organization of marine diversity at a range of spatial and taxonomic scales are undefined. In this paper, we use second-generation sequencing to unmask putatively diverse marine metazoan biodiversity in a Scottish temperate benthic ecosystem. We show that remarkable differences in diversity occurred at microgeographical scales and refute currently accepted ecological and taxonomic paradigms of meiofaunal identity, rank abundance and concomitant understanding of trophic dynamics. Richness estimates from the current benchmarked Operational Clustering of Taxonomic Units from Parallel UltraSequencing analyses are broadly aligned with those derived from morphological assessments. However, the slope of taxon rarefaction curves for many phyla remains incomplete, suggesting that the true alpha diversity is likely to exceed current perceptions. The approaches provide a rapid, objective and cost-effective taxonomic framework for exploring links between ecosystem structure and function of all hitherto intractable, but ecologically important, communities.


Asunto(s)
Biodiversidad , Análisis de Secuencia de ADN/métodos , Animales , Biología Computacional , Biología Marina , Filogenia , Reacción en Cadena de la Polimerasa
5.
BMC Ecol ; 3: 1, 2003 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-12519466

RESUMEN

BACKGROUND: The possibility for commercial mining of deep-sea manganese nodules is currently under exploration in the abyssal Clarion-Clipperton Fracture Zone. Nematodes have potential for biomonitoring of the impact of commercial activity but the natural biodiversity is unknown. We investigate the feasibility of nematodes as biomonitoring organisms and give information about their natural biodiversity. RESULTS: The taxonomic composition (at family to genus level) of the nematode fauna in the abyssal Pacific is similar, but not identical to, the North Atlantic. Given the immature state of marine nematode taxonomy, it is not possible to comment on the commonality or otherwise of species between oceans. The between basin differences do not appear to be directly linked to current ecological factors. The abyssal Pacific region (including the Fracture Zone) could be divided into two biodiversity subregions that conform to variations in the linked factors of flux to the benthos and of sedimentary characteristics. Richer biodiversity is associated with areas of known phytodetritus input and higher organic-carbon flux. Despite high reported sample diversity, estimated regional diversity is less than 400 species. CONCLUSION: The estimated regional diversity of the CCFZ is a tractable figure for biomonitoring of commercial activities in this region using marine nematodes, despite the immature taxonomy (i.e. most marine species have not been described) of the group. However, nematode ecology is in dire need of further study.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/parasitología , Nematodos/clasificación , Agua de Mar/parasitología , Animales , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...