Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Anat ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629319

RESUMEN

Despite centuries of investigation, certain aspects of left ventricular anatomy remain either controversial or uncertain. We make no claims to have resolved these issues, but our review, based on our current knowledge of development, hopefully identifies the issues requiring further investigation. When first formed, the left ventricle had only inlet and apical components. With the expansion of the atrioventricular canal, the developing ventricle cedes part of its inlet to the right ventricle whilst retaining the larger parts of the cushions dividing the atrioventricular canal. Further remodelling of the interventricular communication provides the ventricle with its outlet, with the aortic root being transferred to the left ventricle along with the newly formed myocardium supporting its leaflets. The definitive ventricle possesses inlet, apical and outlet parts. The inlet component is guarded by the mitral valve, with its leaflets, in the normal heart, supported by papillary muscles located infero-septally and supero-laterally. There is but a solitary zone of apposition between the leaflets, which we suggest are best described as being aortic and mural. The trabeculated component extends beyond the inlet to the apex and is confluent with the outlet part, which supports the aortic root. The leaflets of the aortic valve are supported in semilunar fashion within the root, with the ventricular cavity extending to the sinutubular junction. The myocardial-arterial junction, however, stops well short of the sinutubular junction, with myocardium found only at the bases of the sinuses, giving rise to the coronary arteries. We argue that the relationships between the various components should now be described using attitudinally appropriate terms rather than describing them as if the heart is removed from the body and positioned on its apex.

2.
Clin Auton Res ; 34(1): 79-97, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38403748

RESUMEN

PURPOSE: We have re-evaluated the anatomical arguments that underlie the division of the spinal visceral outflow into sympathetic and parasympathetic divisions. METHODOLOGY: Using a systematic literature search, we mapped the location of catecholaminergic neurons throughout the mammalian peripheral nervous system. Subsequently, a narrative method was employed to characterize segment-dependent differences in the location of preganglionic cell bodies and the composition of white and gray rami communicantes. RESULTS AND CONCLUSION: One hundred seventy studies were included in the systematic review, providing information on 389 anatomical structures. Catecholaminergic nerve fibers are present in most spinal and all cranial nerves and ganglia, including those that are known for their parasympathetic function. Along the entire spinal autonomic outflow pathways, proximal and distal catecholaminergic cell bodies are common in the head, thoracic, and abdominal and pelvic region, which invalidates the "short-versus-long preganglionic neuron" argument. Contrary to the classically confined outflow levels T1-L2 and S2-S4, preganglionic neurons have been found in the resulting lumbar gap. Preganglionic cell bodies that are located in the intermediolateral zone of the thoracolumbar spinal cord gradually nest more ventrally within the ventral motor nuclei at the lumbar and sacral levels, and their fibers bypass the white ramus communicans and sympathetic trunk to emerge directly from the spinal roots. Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral outflow. We conclude that the autonomic outflow displays a conserved architecture along the entire spinal axis, and that the perceived differences in the anatomy of the autonomic thoracolumbar and sacral outflow are quantitative.


Asunto(s)
Neuronas , Sistema Nervioso Simpático , Animales , Humanos , Neuronas/fisiología , Sistema Nervioso Simpático/fisiología , Ganglios Simpáticos , Médula Espinal , Sacro , Mamíferos
3.
J Anat ; 244(3): 497-513, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37957890

RESUMEN

The separation of the outflow tract of the developing heart into the systemic and pulmonary arterial channels remains controversial and poorly understood. The definitive outflow tracts have three components. The developing outflow tract, in contrast, has usually been described in two parts. When the tract has exclusively myocardial walls, such bipartite description is justified, with an obvious dogleg bend separating proximal and distal components. With the addition of non-myocardial walls distally, it becomes possible to recognise three parts. The middle part, which initially still has myocardial walls, contains within its lumen a pair of intercalated valvar swellings. The swellings interdigitate with the distal ends of major outflow cushions, formed by the remodelling of cardiac jelly, to form the primordiums of the arterial roots. The proximal parts of the major cushions, occupying the proximal part of the outflow tract, which also has myocardial walls, themselves fuse and muscularise. The myocardial shelf thus formed remodels to become the free-standing subpulmonary infundibulum. Details of all these processes are currently lacking. In this account, we describe the anatomical changes seen during the overall remodelling. Our interpretations are based on the interrogation of serially sectioned histological and high-resolution episcopic microscopy datasets prepared from developing human and mouse embryos, with some of the datasets processed and reconstructed to reveal the specific nature of the tissues contributing to the separation of the outflow channels. Our findings confirm that the tripartite postnatal arrangement can be correlated with the changes occurring during development.


Asunto(s)
Estructuras Embrionarias , Matriz Extracelular , Cardiopatías Congénitas , Corazón , Ratones , Animales , Humanos , Ventrículos Cardíacos , Arteria Pulmonar
4.
Front Cell Dev Biol ; 11: 1259175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900278

RESUMEN

The heart and aortic arch arteries in amniotes form a double circulation, taking oxygenated blood from the heart to the body and deoxygenated blood to the lungs. These major vessels are formed in embryonic development from a series of paired and symmetrical arteries that undergo a complex remodelling process to form the asymmetric arch arteries in the adult. These embryonic arteries form in the pharyngeal arches, which are symmetrical bulges on the lateral surface of the head. The pharyngeal arches, and their associated arteries, are found in all classes of vertebrates, but the number varies, typically with the number of arches reducing through evolution. For example, jawed vertebrates have six pairs of pharyngeal arch arteries but amniotes, a clade of tetrapod vertebrates, have five pairs. This had led to the unusual numbering system attributed to each of the pharyngeal arch arteries in amniotes (1, 2, 3, 4, and 6). We, therefore, propose that these instead be given names to reflect the vessel: mandibular (1st), hyoid (2nd), carotid (3rd), aortic (4th) and pulmonary (most caudal). Aberrant arch artery formation or remodelling leads to life-threatening congenital cardiovascular malformations, such as interruption of the aortic arch, cervical origin of arteries, and vascular rings. We discuss why an alleged fifth arch artery has erroneously been used to interpret congenital cardiac lesions, which are better explained as abnormal collateral channels, or remodelling of the aortic sac.

5.
Cardiol Young ; 33(11): 2139-2147, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37800310

RESUMEN

Controversies continue as to how many pharyngeal arches, with their contained arteries, are to be found in the developing human. Resolving these controversies is of significance to paediatric cardiologists since many investigating abnormalities of the extrapericardial arterial pathways interpret their findings on the basis of persistence of a fifth set of such arteries within an overall complement of six sets. The evidence supporting such an interpretation is open to question. In this review, we present the history of the existence of six such arteries, emphasising that the initial accounts of human development had provided evidence for the existence of only five sets. We summarise the current evidence that substantiates these initial findings. We then show that the lesions interpreted on the basis of persistence of the non-existing fifth arch arteries are well described on the basis of the persistence of collateral channels, known to exist during normal development, or alternatively due to remodelling of the aortic sac.


Asunto(s)
Arterias , Región Branquial , Niño , Humanos , Aorta Torácica
6.
J Anat ; 243(4): 564-569, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37248750

RESUMEN

The pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos. In humans, and other amniotes, there are five pharyngeal arches and traditionally these have been labelled from cranial to caudal-1, 2, 3, 4 and 6. This numbering is odd-there is no '5'. Two reasons have been given for this. One is that during development, a 'fifth' arch forms transiently but is not fully realised. The second is that this numbering fits with the evolutionary history of the pharyngeal arches. Recent studies, however, have shown that neither of these justifications have basis. The traditional labelling is problematic as it causes confusion to those trying to understand the development of the pharyngeal arches. In particular, it creates difficulties in the field of congenital cardiac malformations, where it is common to find congenital cardiac lesions interpreted on the basis of persistence of the postulated arteries of the fifth arch. To resolve these problems and to take account of the recent studies that have clarified pharyngeal arch development, we propose a new terminology for the pharyngeal arches. In this revised scheme, the pharyngeal arches are to be labelled as follows-the first, most cranial, the mandibular (M), the second, the hyoid (H), the third, the carotid (C), the fourth, the aortic (A) and the last, most caudal, the pulmonary (P).


Asunto(s)
Región Branquial , Vertebrados , Animales , Humanos , Arterias , Corazón , Pulmón
7.
Int J Med Sci ; 19(12): 1806-1815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313224

RESUMEN

Hepatocellular carcinoma (HCC) is a primary liver cancer commonly found in adults. Previously, we showed the anticancer effects of Thai herbal plant extract, Dioscorea membranacea Pierre (DM), in HCC-bearing rats. In the present study, we further examined the proposed mechanism of DM, including apoptosis and antioxidant activity. Moreover, we used RNA sequencing (RNA-seq) to analyze molecular pathways in the rat model in which HCC was induced by diethylnitrosamine (DEN) and thioacetamide (TAA). The HCC-bearing rats were then treated with 40 mg/kg of DM for 8 weeks, after which experimental and control rats were sacrificed and liver tissues were collected. The RNA-seq data of DEN/TAA-treated rats exhibited upregulation of 16 hallmark pathways, including epithelial mesenchymal transition, inflammatory responses, and angiogenesis (p<0.01). DM extract expanded the Bax protein-positive pericentral zone in the tumor areas and decreased hepatic malondialdehyde levels, implying a decrease in lipid peroxidation in liver. However, DM treatment did not ameliorate the molecular pathways induced in DEN/TAA-treated livers. Our findings indicate that DM extract has antioxidant activity and exerts its pro-apoptotic effect on rat HCCs in vivo at the (post-)translational level.


Asunto(s)
Carcinoma Hepatocelular , Dioscorea , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Tioacetamida/toxicidad , Tioacetamida/metabolismo , Dietilnitrosamina/toxicidad , Dietilnitrosamina/metabolismo , Dioscorea/metabolismo , Antioxidantes/farmacología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Hígado/patología , Extractos Vegetales/efectos adversos
8.
BMC Med Educ ; 22(1): 498, 2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35752811

RESUMEN

BACKGROUND: Effective first aid on the battlefield is vital to minimize deaths caused by war trauma and improve combat effectiveness. However, it is difficult for junior medical students, which have relatively poor human anatomy knowledge and first aid experience. Therefore, we aim to create a treatment simulation software for war trauma, and to explore its application for first aid training. METHODS : This study is a quantitative post-positivist study using a survey for data collection. First, high-resolution, thin-sectional anatomical images (Chinese Visible Human (CVH) dataset) were used to reconstruct three-dimensional (3D) wound models. Then, the simulation system and the corresponding interactive 3D-PDF, including 3D models, graphic explanation, and teaching videos, were built, and used for first aid training in army medical college. Finally, the interface, war trauma modules, and training effects were evaluated using a five-point Likert scale questionnaire. All measurements are represented as mean and standard deviations. Moreover, free text comments from questionnaires were collected and aggregated. RESULTS: The simulation software and interactive 3D-PDF were established. This included pressure hemostasis of the vertex, face, head-shoulder, shoulder-arm, upper forearm, lower limb, foot, and punctures of the cricothyroid membrane, pneumothorax, and marrow cavity. Seventy-eight medical students participated in the training and completed the questionnaire, including 66 junior college students and 12 graduate students. The results indicated that they were highly satisfied with the software (score: 4.64 ± 0.56). The systems were user-friendly (score: 4.40 ± 0.61) and easy to operate (score: 4.49 ± 0.68). The 3D models, knowledge of hemostasis, and puncture were accurate (scores: 4.41 ± 0.67, and 4.53 ± 0.69) and easily adopted (scores: 4.54 ± 0.635, and 4.40 ± 0.648). They provided information about hemostasis and puncture (all scores > 4.40), except for cricothyroid membrane puncture (scores: 4.39 ± 0.61), improved the learning enthusiasm of medical students (score: 4.55 ± 0.549), and increased learning interest (score: 4.54 ± 0.57). CONCLUSION: Our software can effectively help medical students master first aid skills including hemostasis, cricothyroid membrane and bone marrow puncture, and its anatomy. This may also be used for soldiers and national first aid training.


Asunto(s)
Primeros Auxilios , Estudiantes de Medicina , China , Simulación por Computador , Humanos , Programas Informáticos
9.
Biochem Pharmacol ; 201: 115074, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35568239

RESUMEN

The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.


Asunto(s)
Hígado , Transducción de Señal , Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Transporte Biológico , Hígado/metabolismo
10.
Commun Biol ; 5(1): 226, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277594

RESUMEN

Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.


Asunto(s)
Ventrículos Cardíacos , Corazón , Humanos
11.
Europace ; 24(3): 432-442, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999831

RESUMEN

Despite years of research, many details of the formation of the atrioventricular conduction axis remain uncertain. In this study, we aimed to clarify the situation. We studied three-dimensional reconstructions of serial histological sections and episcopic datasets of human embryos, supplementing these findings with assessment of material housed at the Human Developmental Biological Resource. We also examined serially sectioned human foetal hearts between 10 and 30 weeks of gestation. The conduction axis originates from the primary interventricular ring, which is initially at right angles to the plane of the atrioventricular canal, with which it co-localizes in the lesser curvature of the heart loop. With rightward expansion of the atrioventricular canal, the primary ring bends rightward, encircling the newly forming right atrioventricular junction. Subsequent to remodelling of the outflow tract, part of the primary ring remains localized on the crest of the muscular ventricular septum. By 7 weeks, its atrioventricular part has extended perpendicular to the septal parts. The atrioventricular node is formed at the inferior transition between the ventricular and atrial parts, with the transition itself marking the site of the penetrating atrioventricular bundle. Only subsequent to muscularization of the true second atrial septum does it become possible to recognize the definitive node. The conversion of the developmental arrangement into the definitive situation as seen postnatally requires additional remodelling in the first month of foetal development, concomitant with formation of the inferior pyramidal space and the infero-septal recess of the subaortic outflow tract.


Asunto(s)
Nodo Atrioventricular , Sistema de Conducción Cardíaco , Fascículo Atrioventricular , Atrios Cardíacos , Ventrículos Cardíacos , Humanos
12.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769369

RESUMEN

Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 µg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3-/- compared to Nos2-/- mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2-/- mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3-/- or Nos2-/-/Nos3-/- mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2-/- mice), as this beneficial effect was absent in Nos3-/- or Nos2-/-/Nos3-/- mice.


Asunto(s)
Arginina/metabolismo , Citrulina/administración & dosificación , Endotoxemia/patología , Microcirculación , NADPH Oxidasa 2/fisiología , NADPH Oxidasas/fisiología , Óxido Nítrico/metabolismo , Animales , Endotoxemia/tratamiento farmacológico , Endotoxemia/etiología , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/patología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Glia ; 69(12): 2812-2827, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34396578

RESUMEN

Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord. To investigate the role of GS in mature OL, we used a conditional knockout (cKO) approach to selectively delete GS-encoding gene (Glul) in OL, which caused a significant decrease in glutamine levels on mouse spinal cord extracts. GS cKO mice (CNP-cre+ :Glulfl/fl ) showed no differences in motor neuron numbers, size or axon density; OL differentiation and myelination in the ventral spinal cord was normal up to 6 months of age. Interestingly, GS cKO mice showed a transient and specific decrease in peak force while locomotion and motor coordination remained unaffected. Last, GS expression in OL was increased in chronic pathological conditions in both mouse and humans. We found a disease-stage dependent increase of OL expressing GS in the ventral spinal cord of SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Moreover, we showed that GLUL transcripts levels were increased in OL in leukocortical tissue from multiple sclerosis but not control patients. These findings provide evidence towards OL-encoded GS function in spinal cord sensorimotor axis, which is dysregulated in chronic neurological diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Glutamato-Amoníaco Ligasa , Oligodendroglía , Médula Espinal , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
14.
J Anat ; 239(1): 32-45, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33641166

RESUMEN

Although the development of the sympathetic trunks was first described >100 years ago, the topographic aspect of their development has received relatively little attention. We visualised the sympathetic trunks in human embryos of 4.5-10 weeks post-fertilisation, using Amira 3D-reconstruction and Cinema 4D-remodelling software. Scattered, intensely staining neural crest-derived ganglionic cells that soon formed longitudinal columns were first seen laterally to the dorsal aorta in the cervical and upper thoracic regions of Carnegie stage (CS)14 embryos. Nerve fibres extending from the communicating branches with the spinal cord reached the trunks at CS15-16 and became incorporated randomly between ganglionic cells. After CS18, ganglionic cells became organised as irregular agglomerates (ganglia) on a craniocaudally continuous cord of nerve fibres, with dorsally more ganglionic cells and ventrally more fibres. Accordingly, the trunks assumed a "pearls-on-a-string" appearance, but size and distribution of the pearls were markedly heterogeneous. The change in position of the sympathetic trunks from lateral (para-aortic) to dorsolateral (prevertebral or paravertebral) is a criterion to distinguish the "primary" and "secondary" sympathetic trunks. We investigated the position of the trunks at vertebral levels T2, T7, L1 and S1. During CS14, the trunks occupied a para-aortic position, which changed into a prevertebral position in the cervical and upper thoracic regions during CS15, and in the lower thoracic and lumbar regions during CS18 and CS20, respectively. The thoracic sympathetic trunks continued to move further dorsally and attained a paravertebral position at CS23. The sacral trunks retained their para-aortic and prevertebral position, and converged into a single column in front of the coccyx. Based on our present and earlier morphometric measurements and literature data, we argue that differential growth accounts for the regional differences in position of the sympathetic trunks.


Asunto(s)
Embrión de Mamíferos/anatomía & histología , Desarrollo Embrionario , Sistema Nervioso Simpático/embriología , Humanos
15.
Arrhythm Electrophysiol Rev ; 10(4): 262-272, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35106179

RESUMEN

The pathways for excitation of the atrioventricular node enter either superiorly, as the so-called 'fast' pathway, or inferiorly as the 'slow' pathway. However, knowledge of the specific anatomical details of these pathways is limited. Most of the experimental studies that established the existence of these pathways were conducted in mammalian hearts, which have subtle differences to human hearts. In this review, the authors summarise their recent experiences investigating human cardiac development, correlating these results with the arrangement of the connections between the atrial myocardium and the compact atrioventricular node as revealed by serial sectioning of adult human hearts. They discuss the contributions made from the atrioventricular canal myocardium, as opposed to the primary ring. Both these rings are incorporated into the atrial vestibules, albeit with the primary ring contributing only to the tricuspid vestibule. The atrial septal cardiomyocytes are relatively late contributors to the nodal inputs. Finally, they relate our findings of human cardiac development to the postnatal arrangement.

16.
J Anat ; 237(4): 672-688, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32592418

RESUMEN

Realistic models to understand the developmental appearance of the pelvic nervous system in mammals are scarce. We visualized the development of the inferior hypogastric plexus and its preganglionic connections in human embryos at 4-8 weeks post-fertilization, using Amira 3D reconstruction and Cinema 4D-remodelling software. We defined the embryonic lesser pelvis as the pelvic area caudal to both umbilical arteries and containing the hindgut. Neural crest cells (NCCs) appeared dorsolateral to the median sacral artery near vertebra S1 at ~5 weeks and had extended to vertebra S5 1 day later. Once para-arterial, NCCs either formed sympathetic ganglia or continued to migrate ventrally to the pre-arterial region, where they formed large bilateral inferior hypogastric ganglionic cell clusters (IHGCs). Unlike more cranial pre-aortic plexuses, both IHGCs did not merge because the 'pelvic pouch', a temporary caudal extension of the peritoneal cavity, interposed. Although NCCs in the sacral area started to migrate later, they reached their pre-arterial position simultaneously with the NCCs in the thoracolumbar regions. Accordingly, the superior hypogastric nerve, a caudal extension of the lumbar splanchnic nerves along the superior rectal artery, contacted the IHGCs only 1 day later than the lumbar splanchnic nerves contacted the inferior mesenteric ganglion. The superior hypogastric nerve subsequently splits to become the superior hypogastric plexus. The IHGCs had two additional sources of preganglionic innervation, of which the pelvic splanchnic nerves arrived at ~6.5 weeks and the sacral splanchnic nerves only at ~8 weeks. After all preganglionic connections had formed, separate parts of the inferior hypogastric plexus formed at the bladder neck and distal hindgut.


Asunto(s)
Desarrollo Embrionario/fisiología , Plexo Hipogástrico/embriología , Pelvis Menor/inervación , Cresta Neural/citología , Sistema Nervioso Simpático/embriología , Humanos , Pelvis Menor/embriología
17.
J Anat ; 237(4): 655-671, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32598482

RESUMEN

Compared to the intrinsic enteric nervous system (ENS), development of the extrinsic ENS is poorly documented, even though its presence is easily detectable with histological techniques. We visualised its development in human embryos and foetuses of 4-9.5 weeks post-fertilisation using Amira 3D-reconstruction and Cinema 4D-remodelling software. The extrinsic ENS originated from small, basophilic neural crest cells (NCCs) that migrated to the para-aortic region and then continued ventrally to the pre-aortic region, where they formed autonomic pre-aortic plexuses. From here, nerve fibres extended along the ventral abdominal arteries and finally connected to the intrinsic system. Schwann cell precursors (SCPs), a subgroup of NCCs that migrate on nerve fibres, showed region-specific differences in differentiation. SCPs developed into scattered chromaffin cells of the adrenal medulla dorsolateral to the coeliac artery (CA) and into more tightly packed chromaffin cells of the para-aortic bodies ventrolateral to the inferior mesenteric artery (IMA), with reciprocal topographic gradients between both fates. The extrinsic ENS first extended along the CA and then along the superior mesenteric artery (SMA) and IMA 5 days later. Apart from the branch to the caecum, extrinsic nerves did not extend along SMA branches in the herniated parts of the midgut until the gut loops had returned in the abdominal cavity, suggesting a permissive role of the intraperitoneal environment. Accordingly, extrinsic innervation had not yet reached the distal (colonic) loop of the midgut at 9.5 weeks development. Based on intrinsic ENS-dependent architectural remodelling of the gut layers, extrinsic innervation followed intrinsic innervation 3-4 Carnegie stages later.


Asunto(s)
Desarrollo Embrionario/fisiología , Sistema Nervioso Entérico/embriología , Intestinos/inervación , Organogénesis/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Humanos , Intestinos/embriología , Cresta Neural/citología
18.
PLoS One ; 15(1): e0221544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31986149

RESUMEN

BACKGROUND: Computed tomography (CT) images of livers may show a hypo-attenuated structure alongside the falciform ligament, which can be a focal fatty pseudolesion and can mimic a malignancy. The preferred location is on the right parafissural site, ventral in segment IVa/b. The etiology is not clear, nor is it known how the histology of this location develops. These are evaluated in this study. METHODS: 40 adult cadavers with autopsy and / or postmortem CT in a university hospital and a forensic center were included. Liver biopsies were taken at the left side of the falciform ligament as control, and at the right side as the possible precursor of a pseudolesion; these were examined for collagen and fat content. Cadavers with steatotic (>5% fat) or fibrotic (>2% collagen) control samples were excluded. RESULTS: Significantly more collagen was present in the right parafissural liver parenchyma: median 0.68% (IQR: 0.32-1.17%), compared to the left side 0.48% (IQR: 0.21-0.75%) (p 0.008), with equal fat content and CT attenuation values. The etiophysiology goes back to the demise of the umbilical venes in the early embryonic and neonatal period. CONCLUSIONS: The right parafissural area contains more collagen and an equal amount of fat compared to the control left side. This supports the hypothesis of delayed, 'third' inflow: the postnatal change in blood supply from umbilical to portal leaves the downstream parafissural area hypoperfused leading to hypoxia which in turn results in collagen accumulation and the persistence of paraumbilical veins of Sappey.


Asunto(s)
Colágeno/metabolismo , Diagnóstico Diferencial , Hígado Graso/diagnóstico , Neoplasias Hepáticas/diagnóstico , Hígado/diagnóstico por imagen , Adulto , Autopsia , Biopsia , Cadáver , Hígado Graso/diagnóstico por imagen , Hígado Graso/patología , Femenino , Humanos , Ligamentos/diagnóstico por imagen , Ligamentos/patología , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Mesenterio/diagnóstico por imagen , Mesenterio/patología , Persona de Mediana Edad , Vena Porta/diagnóstico por imagen , Vena Porta/patología , Ombligo/diagnóstico por imagen , Ombligo/patología
19.
Clin Anat ; 33(2): 275-285, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31639237

RESUMEN

Controversies regarding structure and function of the pelvic floor persist because of its poor accessibility and complex anatomical architecture. Most data are based on dissection. This "surgical" approach requires profound prior knowledge, because applying the scalpel precludes a "second look." The "sectional" approach does not entail these limitations, but requires segmentation of structures and three-dimensional reconstruction. This approach has produced several "Visible Human Projects." We dealt with limited spatial resolution and difficult-to-segment structures by proceeding from clear-cut to more fuzzy boundaries and comparing segmentation between investigators. We observed that the bicipital levator ani muscle consisted of pubovisceral and puborectal portions; that the pubovisceral muscle formed, together with rectococcygeal and rectoperineal muscles, a rectal diaphragm; that the external anal sphincter consisted of its subcutaneous portion and the puborectal muscle only; that the striated urethral sphincter had three parts, of which the middle (urethral compressor) was best developed in females and the circular lower ("membranous") best in males; that the rectourethral muscle, an anterior extension of the rectal longitudinal smooth muscle, developed a fibrous node in its center (perineal body); that the perineal body was much better developed in females than males, so that the rectourethral subdivision into posterior rectoperineal and anterior deep perineal muscles was more obvious in females; that the superficial transverse perineal muscle attached to the fibrous septa of the ischioanal fat; and that the uterosacral ligaments and mesorectal fascia colocalized. To facilitate comprehension of the modified topography we provide interactive 3D-PDFs that are freely available for teaching purposes. Clin. Anat. 33:275-285, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Anatomía/educación , Imagenología Tridimensional , Modelos Anatómicos , Diafragma Pélvico/anatomía & histología , Femenino , Humanos , Masculino
20.
Cell Rep ; 29(5): 1287-1298.e6, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665640

RESUMEN

Glutamine is thought to play an important role in cancer cells by being deaminated via glutaminolysis to α-ketoglutarate (aKG) to fuel the tricarboxylic acid (TCA) cycle. Supporting this notion, aKG supplementation can restore growth/survival of glutamine-deprived cells. However, pancreatic cancers are often poorly vascularized and limited in glutamine supply, in alignment with recent concerns on the significance of glutaminolysis in pancreatic cancer. Here, we show that aKG-mediated rescue of glutamine-deprived pancreatic ductal carcinoma (PDAC) cells requires glutamate ammonia ligase (GLUL), the enzyme responsible for de novo glutamine synthesis. GLUL-deficient PDAC cells are capable of the TCA cycle but defective in aKG-coupled glutamine biosynthesis and subsequent nitrogen anabolic processes. Importantly, GLUL expression is elevated in pancreatic cancer patient samples and in mouse PDAC models. GLUL ablation suppresses the development of KrasG12D-driven murine PDAC. Therefore, GLUL-mediated glutamine biosynthesis couples the TCA cycle with nitrogen anabolism and plays a critical role in PDAC.


Asunto(s)
Carbono/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Eliminación de Gen , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA