Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(3): 928-937, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38334357

RESUMEN

Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.


Asunto(s)
Toxinas Bacterianas , Compuestos de Boro , Clostridioides difficile , Iminopiranosas , Animales , Ratones , Toxinas Bacterianas/genética , Enterotoxinas , Clostridioides difficile/genética , Proteínas Bacterianas/genética , Glucosiltransferasas/genética , Mamíferos
2.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37781587

RESUMEN

Clostridioides difficile causes life-threatening diarrhea and is the leading cause of healthcare associated bacterial infections in the United States. During infection, C. difficile releases the gut-damaging toxins, TcdA and TcdB, the primary determinants of disease pathogenesis and are therefore therapeutic targets. TcdA and TcdB contain a glycosyltransferase domain that uses UDP-glucose to glycosylate host Rho GTPases, causing cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the oxocarbenium ion transition state of the glycosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified and therefore, evaluation of isofagomine inhibition against multiple toxin variants are required. Here we show that Isofagomine inhibits the glycosyltransferase activity of multiple TcdB variants and also protects TcdB toxin-induced cell rounding of the most common full-length toxin variants. Further, isofagomine protects against C. difficile induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection permitted recovery of the gastrointestinal microbiota, an important barrier to prevent recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile induced morbidity and mortality.

3.
J Med Chem ; 65(7): 5462-5494, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35324190

RESUMEN

Hypermethylation of CpG regions by human DNA methyltransferase 1 (DNMT1) silences tumor-suppression genes, and inhibition of DNMT1 can reactivate silenced genes. The 5-azacytidines are approved inhibitors of DNMT1, but their mutagenic mechanism limits their utility. A synthon approach from the analogues of S-adenosylhomocysteine, methionine, and deoxycytidine recapitulated the chemical features of the DNMT1 transition state in the synthesis of 16 chemically stable transition-state mimics. Inhibitors causing both full and partial inhibition of purified DNMT1 were characterized. The inhibitors show modest selectivity for DNMT1 versus DNMT3b. Active-site docking predicts inhibitor interactions with S-adenosyl-l-methionine and deoxycytidine regions of the catalytic site, validated by direct binding analysis. Inhibitor action with purified DNMT1 is not reflected in cultured cells. A partial inhibitor activated cellular DNA methylation, and a full inhibitor had no effect on cellular DNA methylation. These compounds provide chemical access to a new family of noncovalent DNMT chemical scaffolds for use in DNA methyltransferases.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Línea Celular , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilasas de Modificación del ADN/metabolismo , Desoxicitidina/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA