Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39246358

RESUMEN

GBA2, the non-lysosomal ß-glucosylceramidase, is an enzyme involved in glucosylceramide metabolism. Pharmacological inhibition of GBA2 by N-alkyl iminosugars is well tolerated and benefits patients suffering from Sandhoff and Niemann-Pick type C diseases, and GBA2 inhibitors have been proposed as candidate-clinical drugs for the treatment of parkinsonism. With the ultimate goal to unravel the role of GBA2 in (patho)physiology, we sought to develop a GBA2-specific activity-based probe (ABP). A library of probes was tested for activity against GBA2 and the two other cellular retaining ß-glucosidases, lysosomal GBA1 and cytosolic GBA3. We show that ß-d-arabinofuranosyl cyclitol aziridine (ß-d-Araf aziridine) reacts with the GBA2 active site nucleophile to form a covalent and irreversible bond. Fluorescent ß-d-Araf aziridine probes potently and selectively label GBA2 both in vitro and in cellulo, allowing for visualization of the localization of overexpressed GBA2 using fluorescence microscopy. Co-staining with an antibody selective for the lysosomal ß-glucosylceramidase GBA1, shows distinct subcellular localization of the two enzymes. We proffer our ABP technology for further delineating the role and functioning of GBA2 in disease and propose the ß-d-Araf aziridine scaffold as a good starting point for the development of GBA2-specific inhibitors for clinical development.

2.
ACS Cent Sci ; 8(1): 51-56, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35106372

RESUMEN

Carbon-nitrogen bonds are ubiquitous in biologically active compounds, prompting synthetic chemists to design various methodologies for their preparation. Arguably, the ideal synthetic approach is to be able to directly convert omnipresent C-H bonds in organic molecules, enabling even late-stage functionalization of complex organic scaffolds. While this approach has been thoroughly investigated for C(sp2)-H bonds, only few examples have been reported for the direct amination of aliphatic C(sp3)-H bonds. Herein, we report the use of a newly developed flow photoreactor equipped with high intensity chip-on-board LED technology (144 W optical power) to trigger the regioselective and scalable C(sp3)-H amination via decatungstate photocatalysis. This high-intensity reactor platform enables simultaneously fast results gathering and scalability in a single device, thus bridging the gap between academic discovery (mmol scale) and industrial production (>2 kg/day productivity). The photocatalytic transformation is amenable to the conversion of both activated and nonactivated hydrocarbons, leading to protected hydrazine products by reaction with azodicarboxylates. We further validated the robustness of our manifold by designing telescoped flow approaches for the synthesis of pyrazoles, phthalazinones and free amines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...