Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 9(3): 309-320.e8, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31521608

RESUMEN

Proteinaceous inclusions containing alpha-synuclein (α-Syn) have been implicated in neuronal toxicity in Parkinson's disease, but the pathways that modulate toxicity remain enigmatic. Here, we used a targeted proteomic assay to simultaneously measure 269 pathway activation markers and proteins deregulated by α-Syn expression across a panel of 33 Saccharomyces cerevisiae strains that genetically modulate α-Syn toxicity. Applying multidimensional linear regression analysis to these data predicted Pah1, a phosphatase that catalyzes conversion of phosphatidic acid to diacylglycerol at the endoplasmic reticulum membrane, as an effector of rescue. Follow-up studies demonstrated that inhibition of Pah1 activity ameliorates the toxic effects of α-Syn, indicate that the diacylglycerol branch of lipid metabolism could enhance α-Syn neuronal cytotoxicity, and suggest a link between α-Syn toxicity and the biology of lipid droplets.


Asunto(s)
Galactolípidos/metabolismo , Neuronas/fisiología , Enfermedad de Parkinson/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , alfa-Sinucleína/metabolismo , Apoptosis , Regulación Fúngica de la Expresión Génica , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Terapia Molecular Dirigida , Transducción de Señal , alfa-Sinucleína/genética
2.
Elife ; 72018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29911972

RESUMEN

In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.


Asunto(s)
Proliferación Celular , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Células Cultivadas , Fase G1 , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Ratones Endogámicos C57BL , Proteínas Represoras/genética , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
Nucleus ; 8(2): 134-143, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28072566

RESUMEN

Histones are evolutionarily conserved proteins that together with DNA constitute eukaryotic chromatin in a defined stoichiometry. Core histones are dynamic scaffolding proteins that undergo a myriad of post-translational modifications, which selectively engage chromosome condensation, replication, transcription and DNA damage repair. Cullin4-RING ubiquitin E3 ligases are known to hold pivotal roles in a wide spectrum of chromatin biology ranging from chromatin remodeling and transcriptional repression, to sensing of cytotoxic DNA lesions. Our recent work uncovers an unexpected function of a CRL4 ligase upstream of these processes in promoting histone biogenesis. The CRL4WDR23 ligase directly controls the activity of the stem-loop binding protein (SLBP), which orchestrates elemental steps of canonical histone transcript metabolism. We demonstrate that non-proteolytic ubiquitination of SLBP ensures sufficient histone reservoirs during DNA replication and is vital for genome integrity and cellular fitness.


Asunto(s)
Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Secuencias Invertidas Repetidas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitinación
5.
Nat Commun ; 7: 12810, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27641145

RESUMEN

Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3(KLHL21) activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HeLa , Humanos , Ubiquitinación
6.
Mol Cell ; 62(4): 627-35, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203182

RESUMEN

To maintain genome integrity and epigenetic information, mammalian cells must carefully coordinate the supply and deposition of histones during DNA replication. Here we report that the CUL4 E3 ubiquitin ligase complex CRL4(WDR23) directly regulates the stem-loop binding protein (SLBP), which orchestrates the life cycle of histone transcripts including their stability, maturation, and translation. Lack of CRL4(WDR23) activity is characterized by depletion of histones resulting in inhibited DNA replication and a severe slowdown of growth in human cells. Detailed analysis revealed that CRL4(WDR23) is required for efficient histone mRNA 3' end processing to produce mature histone mRNAs for translation. CRL4(WDR23) binds and ubiquitylates SLBP in vitro and in vivo, and this modification activates SLBP function in histone mRNA 3' end processing without affecting its protein levels. Together, these results establish a mechanism by which CUL4 regulates DNA replication and possible additional chromatin transactions by controlling the concerted expression of core histones.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , ADN/biosíntesis , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Portadoras/genética , Ensamble y Desensamble de Cromatina , ADN/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Proteínas Nucleares/genética , Unión Proteica , Procesamiento de Término de ARN 3' , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Transfección , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Factores de Escisión y Poliadenilación de ARNm/genética
7.
Proc Natl Acad Sci U S A ; 113(19): E2564-9, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114506

RESUMEN

Analyses of protein complexes are facilitated by methods that enable the generation of recombinant complexes via coexpression of their subunits from multigene DNA constructs. However, low experimental throughput limits the generation of such constructs in parallel. Here we describe a method that allows up to 25 cDNAs to be assembled into a single baculoviral expression vector in only two steps. This method, called biGBac, uses computationally optimized DNA linker sequences that enable the efficient assembly of linear DNA fragments, using reactions developed by Gibson for the generation of synthetic genomes. The biGBac method uses a flexible and modular "mix and match" approach and enables the generation of baculoviruses from DNA constructs at any assembly stage. Importantly, it is simple, efficient, and fast enough to allow the manual generation of many multigene expression constructs in parallel. We have used this method to generate and characterize recombinant forms of the anaphase-promoting complex/cyclosome, cohesin, and kinetochore complexes.


Asunto(s)
Baculoviridae/genética , Vectores Genéticos/genética , Familia de Multigenes/genética , Complejos Multiproteicos/genética , Ingeniería de Proteínas/métodos , Transfección/métodos , Clonación Molecular/métodos , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Integr Biol (Camb) ; 7(4): 412-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25734609

RESUMEN

Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation. Indeed, we found that Hog1 phosphorylates its activating kinase Ssk2 on several sites, and cells expressing a non-phosphorylatable Ssk2 mutant are partially defective for feedback regulation and proper control of basal Hog1 activity. Together, our data suggest that Hog1 activity is controlled by intertwined regulatory mechanisms operating with varying kinetics, which together tune the Hog1 response to balance basal Hog1 activity and its steady-state level after adaptation to high osmolarity.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Glucosa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osmorregulación/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Simulación por Computador , Modelos Biológicos , Presión Osmótica/fisiología
9.
J Cell Sci ; 128(9): 1732-45, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795299

RESUMEN

The mitotic spindle drives chromosome movement during mitosis and attaches to chromosomes at dedicated genomic loci named centromeres. Centromeres are epigenetically specified by their histone composition, namely the presence of the histone H3 variant CENP-A, which is regulated during the cell cycle by its dynamic expression and localization. Here, we combined biochemical methods and quantitative imaging approaches to investigate a new function of CUL4-RING E3 ubiquitin ligases (CRL4) in regulating CENP-A dynamics. We found that the core components CUL4 and DDB1 are required for centromeric loading of CENP-A, but do not influence CENP-A maintenance or pre-nucleosomal CENP-A levels. Interestingly, we identified RBBP7 as a substrate-specific CRL4 adaptor required for this process, in addition to its role in binding and stabilizing soluble CENP-A. Our data thus suggest that the CRL4 complex containing RBBP7 (CRL4(RBBP7)) might regulate mitosis by promoting ubiquitin-dependent loading of newly synthesized CENP-A during the G1 phase of the cell cycle.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteína 7 de Unión a Retinoblastoma/metabolismo , Proteína A Centromérica , Proteínas de Unión al ADN/metabolismo , Humanos , Mitosis , Unión Proteica , Estabilidad Proteica , Proteína 4 de Unión a Retinoblastoma/metabolismo
10.
J Cell Biol ; 206(4): 509-24, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25135934

RESUMEN

Kinetochores are megadalton-sized protein complexes that mediate chromosome-microtubule interactions in eukaryotes. How kinetochore assembly is triggered specifically on centromeric chromatin is poorly understood. Here we use biochemical reconstitution experiments alongside genetic and structural analysis to delineate the contributions of centromere-associated proteins to kinetochore assembly in yeast. We show that the conserved kinetochore subunits Ame1(CENP-U) and Okp1(CENP-Q) form a DNA-binding complex that associates with the microtubule-binding KMN network via a short Mtw1 recruitment motif in the N terminus of Ame1. Point mutations in the Ame1 motif disrupt kinetochore function by preventing KMN assembly on chromatin. Ame1-Okp1 directly associates with the centromere protein C (CENP-C) homologue Mif2 to form a cooperative binding platform for outer kinetochore assembly. Our results indicate that the key assembly steps, CENP-A recognition and outer kinetochore recruitment, are executed through different yeast constitutive centromere-associated network subunits. This two-step mechanism may protect against inappropriate kinetochore assembly similar to rate-limiting nucleation steps used by cytoskeletal polymers.


Asunto(s)
Autoantígenos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Proteínas de Ciclo Celular/genética , Centrómero/genética , Proteína A Centromérica , Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
11.
J Cell Biol ; 200(1): 21-30, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23277429

RESUMEN

Kinetochores are large protein complexes that link sister chromatids to the spindle and transduce microtubule dynamics into chromosome movement. In budding yeast, the kinetochore-microtubule interface is formed by the plus end-associated Dam1 complex and the kinetochore-resident Ndc80 complex, but how they work in combination and whether a physical association between them is critical for chromosome segregation is poorly understood. Here, we define structural elements required for the Ndc80-Dam1 interaction and probe their function in vivo. A novel ndc80 allele, selectively impaired in Dam1 binding, displayed growth and chromosome segregation defects. Its combination with an N-terminal truncation resulted in lethality, demonstrating essential but partially redundant roles for the Ndc80 N-tail and Ndc80-Dam1 interface. In contrast, mutations in the calponin homology domain of Ndc80 abrogated kinetochore function and were not compensated by the presence of Dam1. Our experiments shed light on how microtubule couplers cooperate and impose important constraints on structural models for outer kinetochore assembly.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
12.
Nat Cell Biol ; 14(6): 604-13, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561346

RESUMEN

Centromeres direct the assembly of kinetochores, microtubule-attachment sites that allow chromosome segregation on the mitotic spindle. Fundamental differences in size and organization between evolutionarily distant eukaryotic centromeres have in many cases obscured general principles of their function. Here we demonstrate that centromere-binding proteins are highly conserved between budding yeast and humans. We identify the histone-fold protein Cnn1(CENP-T) as a direct centromere receptor of the microtubule-binding Ndc80 complex. The amino terminus of Cnn1 contains a conserved peptide motif that mediates stoichiometric binding to the Spc24-25 domain of the Ndc80 complex. Consistent with the critical role of this interaction, artificial tethering of the Ndc80 complex through Cnn1 allows mini-chromosomes to segregate in the absence of a natural centromere. Our results reveal the molecular function of CENP-T proteins and demonstrate how the Ndc80 complex is anchored to centromeres in a manner that couples chromosome movement to spindle dynamics.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Cromosómicas no Histona/genética , Secuencia Conservada , Proteínas del Citoesqueleto , Evolución Molecular , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Unión Proteica , Alineación de Secuencia , Calponinas
13.
Curr Biol ; 22(9): 787-93, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22521784

RESUMEN

Oscillating cyclin-dependent kinase 1 (Cdk1) activity is the major regulator of cell-cycle progression, whereas the Aurora B kinase, as part of the chromosome passenger complex (CPC), controls critical aspects of mitosis such as chromosome condensation and biorientation on the spindle. How these kinases mechanistically coordinate their important functions is only partially understood. Here, using budding yeast, we identify a regulatory mechanism by which the Cdk1 kinase Cdc28 directly controls the Aurora kinase Ipl1. We show that Cdk1 phosphorylates Ipl1 on two serine residues in the N-terminal domain, thereby suppressing its association with the microtubule plus-end tracking protein Bim1 until the onset of anaphase. Failure to phosphorylate Ipl1 leads to its premature targeting to the metaphase spindle and results in constitutive Bim1 phosphorylation, which is normally restricted to anaphase. Cells expressing an Ipl1-Sli15 complex that cannot be phosphorylated by Cdk1 display a severe growth defect. Our work shows that Ipl1/Aurora is not only the catalytic subunit of the CPC but also an important regulatory target that allows Cdk1 to coordinate chromosome biorientation with spindle morphogenesis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasas , Fosforilación
14.
Nat Rev Mol Cell Biol ; 12(7): 407-12, 2011 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-21633384

RESUMEN

Kinetochores are large proteinaceous complexes that physically link centromeric DNA to the plus ends of spindle microtubules. Stable kinetochore-microtubule attachments are a prerequisite for the accurate and efficient distribution of genetic material over multiple generations. In the past decade, concerted research has resulted in the identification of the individual kinetochore building blocks, the characterization of critical microtubule-interacting components, such as the NDC80 complex, and the development of an approximate model of the architecture of this sophisticated biological machine.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Centrómero/genética , Centrómero/metabolismo , Proteínas del Citoesqueleto , Evolución Molecular , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Cell Biol ; 189(4): 641-9, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20479465

RESUMEN

Kinetochores must remain associated with microtubule ends, as they undergo rapid transitions between growth and shrinkage. The molecular basis for this essential activity that ensures correct chromosome segregation is unclear. In this study, we have used reconstitution of dynamic microtubules and total internal reflection fluorescence microscopy to define the functional relationship between two important budding yeast kinetochore complexes. We find that the Dam1 complex is an autonomous plus end-tracking complex. The Ndc80 complex, despite being structurally related to the general tip tracker EB1, fails to recognize growing ends efficiently. Dam1 oligomers are necessary and sufficient to recruit Ndc80 to dynamic microtubule ends, where both complexes remain continuously associated. The interaction occurs specifically in the presence of microtubules and is subject to regulation by Ipl1 phosphorylation. These findings can explain how the force harvested by Dam1 is transmitted to the rest of the kinetochore via the Ndc80 complex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Dev Biol ; 317(1): 132-46, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18342847

RESUMEN

The long bones of vertebrate limbs originate from cartilage templates and are formed by the process of endochondral ossification. This process requires that chondrocytes undergo a progressive maturation from proliferating to postmitotic prehypertrophic to mature, hypertrophic chondrocytes. Coordinated control of proliferation and maturation regulates growth of the skeletal elements. Various signals and pathways have been implicated in orchestrating these processes, but the underlying intracellular molecular mechanisms are often not entirely known. Here we demonstrated in the chick using replication-competent retroviruses that constitutive activation of Calcium/Calmodulin-dependent kinase II (CaMKII) in the developing wing resulted in elongation of skeletal elements associated with premature differentiation of chondrocytes. The premature maturation of chondrocytes was a cell-autonomous effect of constitutive CaMKII signaling associated with down-regulation of cell-cycle regulators and up-regulation of chondrocyte maturation markers. In contrast, the elongation of the skeletal elements resulted from a non-cell autonomous up-regulation of the Indian hedgehog responsive gene encoding Parathyroid-hormone-related peptide. Reduction of endogenous CaMKII activity by overexpressing an inhibitory peptide resulted in shortening of the skeletal elements associated with a delay in chondrocyte maturation. Thus, CaMKII is an essential component of intracellular signaling pathways regulating chondrocyte maturation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condrocitos/metabolismo , Osteogénesis , Transducción de Señal , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Diferenciación Celular , Pollos , Regulación hacia Abajo , Isoenzimas/metabolismo , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...