RESUMEN
Recent clinical experience has demonstrated that adoptive regulatory T (Treg) cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCâ) promote Treg cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a Good Manufacturing Practice (GMP) compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is coupled to a distinct Treg cell-intrinsic transcriptional program characterized by elevated expression of replication-related genes (CDK1, PLK1, CDC20), downregulation of progenitor and lymph node-homing molecules (LEF1 CCR7, SELL) and induction of intestinal and inflammatory tissue migratory markers (ITGA4, CXCR1) consistent with expression of a gut homing (CCR7lo ß7hi) phenotype. Importantly, we find that MulTreg are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or T helper type1 (Th1)-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 Treg-Specific Demethylated Region (TSDR) demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno Graft vs Host Disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.
Asunto(s)
Autoinmunidad , Recuento de Linfocitos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/inmunología , Células Madre Adultas/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Biomarcadores , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Humanos , Inmunofenotipificación , Masculino , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Immunosuppressive drugs in clinical transplantation are necessary to inhibit the immune response to donor antigens. Although they are effective in controlling acute rejection, they do not prevent long-term transplant loss from chronic rejection. In addition, immunosuppressive drugs have adverse side effects, including increased rate of infections and malignancies. Adoptive cell therapy with human Tregs represents a promising strategy for the induction of transplantation tolerance. Phase I/II clinical trials in transplanted patients are already underway, involving the infusion of Tregs alongside concurrent immunosuppressive drugs. However, it remains to be determined whether the presence of immunosuppressive drugs negatively impacts Treg function and stability. We tested in vitro and in vivo the effects of tacrolimus, mycophenolate and methylprednisolone (major ISDs used in transplantation) on ex vivo expanded, rapamycin-treated human Tregs. The in vitro results showed that these drugs had no effect on phenotype, function and stability of Tregs, although tacrolimus affected the expression of chemokine receptors and IL-10 production. However, viability and proliferative capacity were reduced in a dose-dependent manner by all the three drugs. The in vivo experiments using a humanized mouse model confirmed the in vitro results. However, treatment of mice with only rapamycin maintained the viability, function and proliferative ability of adoptively transferred Tregs. Taken together, our results suggest that the key functions of ex vivo expanded Tregs are not affected by a concurrent immunosuppressive therapy. However, the choice of the drug combination and their timing and dosing should be considered as an essential component to induce and maintain tolerance by Treg.