Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Radiol Exp ; 7(1): 25, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37211577

RESUMEN

PURPOSE: To develop an isotropic three-dimensional (3D) T2 mapping technique for the quantitative assessment of the composition of knee cartilage with high accuracy and precision. METHODS: A T2-prepared water-selective isotropic 3D gradient-echo pulse sequence was used to generate four images at 3 T. These were used for three T2 map reconstructions: standard images with an analytical T2 fit (AnT2Fit); standard images with a dictionary-based T2 fit (DictT2Fit); and patch-based-denoised images with a dictionary-based T2 fit (DenDictT2Fit). The accuracy of the three techniques was first optimized in a phantom study against spin-echo imaging, after which knee cartilage T2 values and coefficients of variation (CoV) were assessed in ten subjects in order to establish accuracy and precision in vivo. Data given as mean ± standard deviation. RESULTS: After optimization in the phantom, whole-knee cartilage T2 values of the healthy volunteers were 26.6 ± 1.6 ms (AnT2Fit), 42.8 ± 1.8 ms (DictT2Fit, p < 0.001 versus AnT2Fit), and 40.4 ± 1.7 ms (DenDictT2Fit, p = 0.009 versus DictT2Fit). The whole-knee T2 CoV reduced from 51.5% ± 5.6% to 30.5 ± 2.4 and finally to 13.1 ± 1.3%, respectively (p < 0.001 between all). The DictT2Fit improved the data reconstruction time: 48.7 ± 11.3 min (AnT2Fit) versus 7.3 ± 0.7 min (DictT2Fit, p < 0.001). Very small focal lesions were observed in maps generated with DenDictT2Fit. CONCLUSIONS: Improved accuracy and precision for isotropic 3D T2 mapping of knee cartilage were demonstrated by using patch-based image denoising and dictionary-based reconstruction. KEY POINTS: • Dictionary T2 fitting improves the accuracy of three-dimensional (3D) knee T2 mapping. • Patch-based denoising results in high precision in 3D knee T2 mapping. • Isotropic 3D knee T2 mapping enables the visualization of small anatomical details.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Voluntarios Sanos
2.
Acad Radiol ; 24(9): 1114-1124, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28365232

RESUMEN

RATIONALE AND OBJECTIVES: To compare adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) algorithms for reduced-dose computed tomography (CT). MATERIALS AND METHODS: Forty-four young oncology patients (mean age 30 ± 9 years) were included. After routine thoraco-abdominal CT (dose 100%, average CTDIvol 9.1 ± 2.4 mGy, range 4.4-16.9 mGy), follow-up CT was acquired at 50% (average CTDIvol 4.5 ± 1.2 mGy, range 2.2-8.4 mGy) in 29 patients additionally at 20% dose (average CTDIvol 1.9 ± 0.5 mGy, range 0.9-3.4 mGy). Each reduced-dose CT was reconstructed using both ASIR and MBIR. Four radiologists (two juniors and two seniors) blinded to dose and technique read each set of CT images regarding objective and subjective image qualities (high- or low-contrast structures), subjective noise or pixilated appearance, diagnostic confidence, and lesion detection. RESULTS: At all dose levels, objective image noise was significantly lower with MBIR than with ASIR (P < 0.001). The subjective image quality for low-contrast structures was significantly higher with MBIR than with ASIR (P < 0.001). Reduced-dose abdominal CT images of patients with higher body mass index (BMI) were read with significantly higher diagnostic confidence than images of slimmer patients (P < 0.001) and had higher subjective image quality, regardless of technique. Although MBIR images appeared significantly more pixilated than ASIR images, they were read with higher diagnostic confidence, especially by juniors (P < 0.001). CONCLUSIONS: Reduced-dose CT during the follow-up of young oncology patients should be reconstructed with MBIR to ensure diagnostic quality. Elevated body mass index does not hamper the quality of reduced-dose CT.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/diagnóstico por imagen , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Índice de Masa Corporal , Femenino , Humanos , Masculino , Exposición a la Radiación , Relación Señal-Ruido , Método Simple Ciego , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...