Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Biophys Chem ; 309: 107233, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579435

RESUMEN

Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM-), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM-, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM- have a high affinity for DMPC: the binding of EM- to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, Kp = (1.4 ± 0.3)x103. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, Kp = (3.2 ± 0.3)x103. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM- is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM-, present on different microregions of an organism, as local pH values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.


Asunto(s)
Emodina , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Marcadores de Spin
3.
Biophys Chem ; 300: 107075, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451052

RESUMEN

The saturated LPC18:0 and unsaturated LPC18:1 lysophosphatidylcholines have important roles in inflammation and immunity and are interesting targets for immunotherapy. The synthetic cationic lipid DODAB has been successfully employed in delivery systems, and would be a suitable carrier for those lysophosphatidylcholines. Here, assemblies of DODAB and LPC18:0 or LPC18:1 were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. LPC18:0 increased the DODAB gel-fluid transition enthalpy and rigidified both phases. In contrast, LPC18:1 caused a decrease in the DODAB gel-fluid transition temperature and cooperativity, associated with two populations with distinct rigidities in the gel phase. In the fluid phase, LPC18:1 increased the surface order but, differently from LPC18:0, did not affect viscosity at the membrane core. The impact of the different acyl chains of LPC18:0 and 18:1 on structure and thermotropic behavior should be considered when developing applications using mixed DODAB membranes.


Asunto(s)
Lisofosfatidilcolinas , Compuestos de Amonio Cuaternario , Termodinámica , Temperatura de Transición , Compuestos de Amonio Cuaternario/química , Rastreo Diferencial de Calorimetría , Membrana Dobles de Lípidos/química
4.
ACS Omega ; 8(6): 5306-5315, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816677

RESUMEN

C24:1 sulfatide (SF) is an endogenous activator of type II NKT cells. The thermotropic behavior and structure of SF dispersions and its mixtures (4.8-16.6 mol %) with cationic dioctadecyldimethylammonium bromide (DODAB) bilayers were investigated by differential scanning calorimetry and electron paramagnetic resonance spectroscopy. The non-interdigitated lamellar structures formed by pure SF display broad thermal events around 27.5 °C when heated and cooled. These events disappear upon mixing with DODAB, showing complete lipid miscibility. SF decreases the DODAB gel-phase packing, with a consequent decrease in phase-transition temperatures and cooperativity upon heating. In contrast, SF increases the rigidity of the DODAB fluid phase, resulting in a smaller decrease in transition temperatures upon cooling. The hysteresis between heating and cooling decreased as the SF molar fraction increased. These effects on DODAB are similar to the ones described for other glycolipids, such as αGalCer and ßGlcCer. This might be due to the orientation of the rigid and planar amide bond that connects their sphingoid bases and acyl chains, which result in a V-shaped conformation of the glycolipid molecules. The current results may be important to plan and develop new immunotherapeutic tools based on SF.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122020, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36323087

RESUMEN

Barbaloin (10-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthraquinone: aloin A), present in Aloe species, is widely used in food, cosmetic and pharmaceutical industries. Here we characterize its optical absorption and emission spectra in aqueous solution at different pH values. Through pH titration, using both absorption and fluorescence spectroscopy, two pKa values for Barbaloin were determined: pKa1=9.6±0.6 and pKa2=12.6±0.8. These acidity constants were found to be higher than those found for Emodin, a similar molecule which lacks the sugar moiety present in Barbaloin. Performing quantum mechanical calculations for non-ionized, singly, doubly, and triply deprotonated forms of Barbaloin in vacuum and in water, we assigned the positions of the site for the first and third deprotonation in the anthraquinone group, and the second deprotonation in the glucose group. The instability of Barbaloin in high pH solutions is discussed here, and the optical absorption and fluorescence spectra due to products resulted from Barbaloin degradation at high pH is well separated from the Barbaloin original spectra. Biological fluids have specific pH values to maintain homeostasis, hence determining the pKa of Barbaloin is important to evaluate the mechanism of action of this drug in different parts of an organism as well as to predict pharmacological relevant parameters, such as absorption, distribution, metabolism, and excretion.


Asunto(s)
Antracenos , Antraquinonas , Antracenos/química , Antraquinonas/química , Agua
6.
Chem Phys Lipids ; 243: 105173, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995561

RESUMEN

The present work monitors structural changes in anionic membranes (DPPG; 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) caused by the native antimicrobial peptide (AMP) Hylin a1 (Hya1; IFGAILPLALGALKNLIK-NH2) and its synthetic analogue K0Hya1 (KIFGAILPLALGALKNLIK-NH2), with an extra positive residue of lysine at the N-terminus of the peptide chain. Anionic membranes were used to mimic anionic lipids in bacteria membranes. Differential scanning calorimetry (DSC) evinced that both peptides strongly disrupt the lipid bilayers. However, whereas the native peptide (+3) induces a space-average and/or time-average disruption on DPPG bilayers, the more charged, K0Hya1 (+4), appears to be strongly attached to the membrane, clearly giving rise to the coexistence of two different lipid regions, one depleted of peptide and another one peptide-disrupted. The membrane fluorescent probe Laurdan indicates that, in average, the peptides increase the bilayer packing of fluid DPPG (above the lipid gel-fluid transition temperature) and/or decrease its polarity. Spin labels, incorporated into DPPG membrane, confirm, and extend the results obtained with Laurdan, indicating that the peptides increase the lipid packing both in gel and fluid DPPG bilayers. Therefore, our results confirm that Laurdan is often unable to monitor structural modifications induced on gel membranes by exogenous molecules. Through the measurement of the leakage of entrapped carboxyfluorescein (CF), a fluorescent dye, in DPPG large unilamellar vesicles it was possible to show that both peptides induce pore formation in DPPG bilayers. Furthermore, CF experiments show that Hylin peptides are strongly bound to DPPG bilayers in the gel phase, not being able to migrate to other DPPG vesicles. Here we discuss the complementarity of different techniques in monitoring structural alterations caused on lipid bilayers by Hylin peptides, and how it could be used to help in the understanding of the action of other exogenous molecules on biological membranes.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilgliceroles , Péptidos Antimicrobianos , Guayacol/análogos & derivados , Cetonas , Membrana Dobles de Lípidos/química , Péptidos/química , Fosfatidilgliceroles/química
7.
Sci Rep ; 11(1): 23712, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887428

RESUMEN

The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Crotoxina/química , Crotoxina/metabolismo , Macrófagos/metabolismo , Termodinámica , Algoritmos , Animales , Crotalus , Técnica del Anticuerpo Fluorescente , Humanos , Cinética , Modelos Teóricos , Estructura Molecular , Unión Proteica , Análisis Espectral , Relación Estructura-Actividad , Células THP-1
8.
Biochem Biophys Rep ; 28: 101171, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825069

RESUMEN

ATP-Binding Cassette transporters (ABC transporters) are protein complexes involved in the import and export of different molecules, including ions, sugars, peptides, drugs, and others. Due to the diversity of substrates, they have large relevance in physiological processes such as virulence, pathogenesis, and antimicrobial resistance. In Xanthomonas citri subsp. citri, the phytopathogen responsible for the citrus canker disease, 20% of ABC transporters components are expressed under infection conditions, including the putative putrescine/polyamine ABC transporter, PotFGHI. Polyamines are ubiquitous molecules that mediate cell growth and proliferation and play important role in bacterial infections. In this work, we characterized the X. citri periplasmic-binding protein PotF (XAC2476) using bioinformatics, biophysical and structural methods. PotF is highly conserved in Xanthomonas sp. genus, and we showed it is part of a set of proteins related to the import and assimilation of polyamines in X. citri. The interaction of PotF with putrescine and spermidine was direct and indirectly shown through fluorescence spectroscopy analyses, and experiments of circular dichroism (CD) and small-angle X-ray scattering (SAXS), respectively. The protein showed higher affinity for spermidine than putrescine, but both ligands induced structural changes that coincided with the closing of the domains and increasing of thermal stability.

9.
Curr Res Struct Biol ; 3: 165-178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34382010

RESUMEN

Mycobacterium tuberculosis (Mtb) has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter. In this work, we resolved the three-dimensional structure of the PknF catalytic domain (cPknF) in complex with the human kinase inhibitor IKK16. cPknF is conserved when compared to other STPKs but shows specific residues in the binding site where the inhibitor is positioned. In addition, using Small Angle X-Ray Scattering analysis we monitored the behavior of the wild type and three FHA-phosphomimetic mutants in solution, and measured the cPknF affinity for these domains. The kinase showed higher affinity for the non-phosphorylated wild type domain and preference for phosphorylation of T152 inducing the rapprochement of the domains and significant structural changes. The results shed some light on the process of regulating the transporter's activity by phosphorylation and arises important questions about evolution and importance of this mechanism for the bacillus.

10.
Rev Med Liege ; 76(5-6): 550-553, 2021 05.
Artículo en Francés | MEDLINE | ID: mdl-34080396

RESUMEN

Treatments for oral cancer can seriously impair the function and the aesthetic, and thus contribute to a significant reduction in the quality of life of affected patients. The role of prosthetic dentists in the multidisciplinary management of these patients is essential both in oral rehabilitation and in prosthetic planning and subsequent rehabilitation. Therefore, these dentists should be involved in the care pathway in order to shape and design the further oral rehabilitation prior to reconstructive surgery and ultimately make the patient smile again.


Les traitements des cancers de la cavité buccale peuvent gravement altérer la fonction et l'esthétique, et participer, ainsi, à réduire considérablement la qualité de vie des patients. Le rôle des dentistes spécialisés en prothèse dans la prise en charge pluridisciplinaire de ces patients est essentiel, tant en matière de rééducation orale que de planification prothétique et sa réhabilitation ultérieure. Dès lors, ces dentistes devraient être impliqués dans le parcours de soins afin de façonner et d'esquisser la réhabilitation bucco-dentaire en amont de la chirurgie reconstructrice et, in fine, rendre le sourire aux patients.


Asunto(s)
Neoplasias de la Boca , Procedimientos de Cirugía Plástica , Humanos , Neoplasias de la Boca/cirugía , Calidad de Vida
11.
Biochim Biophys Acta Biomembr ; 1863(7): 183622, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33865809

RESUMEN

The present work compares the interaction of the antibiotic levofloxacin (LVX) with zwitterionic and anionic liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), respectively. By using differential scanning calorimetry (DSC), and with spin labels incorporated into liposomes at two different depths of the bilayers, we investigated the changes induced on the membrane by increasing concentrations of LVX. Further information was obtained using intrinsic LVX fluorescence. Under the conditions used here, all techniques evinced that LVX has little affinity for DPPC zwitterionic membrane. Opposite to that, LVX exhibits a considerable affinity for anionic bilayers, with membrane partition constants Kp = (3.3 ± 0.5) × 102 and (4.5 ± 0.3) × 102, for gel and fluid DPPG membranes, respectively. On binding to DPPG, LVX seems to give rise to the coexistence of LVX -rich and -poor domains on DPPG membranes, as detected by DSC. At the highest LVX concentration used (20 mol%), DSC trace shows an increase in the cooperativity of DPPG gel-fluid transition, also detected by spin labels as an increase in the bilayer packing. Moreover, LVX does not induce pore formation in either DPPG or POPG vesicles. Considering the possible relevance of LVX-membrane interaction for the biological and toxicological action of the antibiotic, the findings discussed here certainly contribute to a better understanding of its action, and the planning of new drugs.


Asunto(s)
Antibacterianos/metabolismo , Levofloxacino/metabolismo , Liposomas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Aniones/química , Antibacterianos/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia por Spin del Electrón , Levofloxacino/química , Liposomas/química , Fosfatidilgliceroles/química , Espectrometría de Fluorescencia , Marcadores de Spin , Temperatura
12.
Chem Phys Lipids ; 234: 105018, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232725

RESUMEN

As a potential drug, 2-nitrobenzaldehyde-thiosemicarbazone (2-TSC), a thiosemicarbazone derived from the terpene R-(+)-limonene, was studied through calorimetric and spectroscopic techniques. Differential Scanning Calorimetry (DSC) data showed that 2-TSC causes structural changes in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DMPC) membrane, strongly decreasing the cooperativity of the bilayer gel-fluid thermal transition. Optical absorption spectroscopy showed that 2-TSC is more soluble in ethanol and lipids than in water medium, and that the drug displays different structures in the different environments. Though 2-TSC displays no fluorescence, time resolved fluorescence showed that the drug is an effective quencher of the fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). As it is well accepted that Laurdan is positioned into the bilayer close to the membrane surface, that is possibly the localization of 2-TSC in a bilayer. Electron spin resonance (ESR) of the probe 1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocholine (14-PCSL) revealed that 2-TSC is inserted into the hydrocarbon part of the bilayer, fluidizing the lipid bilayer gel phase and rigidifying or organizing the bilayer fluid phase. Similar effects are found for other lipophilic molecules, including cholesterol. These results are useful to improve the understanding of the processes that govern the interaction of thiosemicarbazones with cell membranes, related to the activity of the drugs and their cytotoxicity.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Limoneno/química , 1,2-Dipalmitoilfosfatidilcolina/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia por Spin del Electrón , Colorantes Fluorescentes/química , Estructura Molecular , Espectrometría de Fluorescencia , Estereoisomerismo
13.
J Chem Phys ; 153(24): 244104, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380080

RESUMEN

Remarkable interest is associated with the interpretation of the Prodan fluorescent spectrum. A sequential hybrid Quantum Mechanics/Molecular Mechanics method was used to establish that the fluorescent emission occurs from two different excited states, resulting in a broad asymmetric emission spectrum. The absorption spectra in several solvents were measured and calculated using different theoretical models presenting excellent agreement. All theoretical models [semiempirical, time dependent density functional theory and and second-order multiconfigurational perturbation theory] agree that the first observed band at the absorption spectrum in solution is composed of three electronic excitations very close in energy. Then, the electronic excitation around 340 nm-360 nm may populate the first three excited states (π-π*Lb, n-π*, and π-π*La). The ground state S0 and the first three excited states were analyzed using multi-configurational calculations. The corresponding equilibrium geometries are all planar in vacuum. Considering the solvent effects in the electronic structure of the solute and in the solvent relaxation around the solute, it was identified that these three excited states can change the relative order depending on the solvent polarity, and following the minimum path energy, internal conversions may occur. A consistent explanation of the experimental data is obtained with the conclusive interpretation that the two bands observed in the fluorescent spectrum of Prodan, in several solvents, are due to the emission from two independent states. Our results indicate that these are the n-π* S2 state with a small dipole moment at a lower emission energy and the π-π*Lb S1 state with large dipole moment at a higher emission energy.

14.
Biochem Biophys Rep ; 24: 100827, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33195825

RESUMEN

Antimicrobial peptides (AMPs) have been appointed as a possible alternative to traditional antibiotics in face of pathogens increasing resistance to conventional drugs. Hylin a1 (IFGAILPLALGALKNLIK), an AMP extracted from the skin secretion of a South American frog, Hypsiboas albopunctatus, was found to show a strong cytotoxicity against bacteria and fungus, but also a considerable hemolytic action. Considering the toxicity of the peptide in eukaryotic cells, this work focuses on investigating the effects of the interaction of the Hylin a1 analogues W6Hya1, D0W6Hya1 and K0W6Hya1 with models of eukaryotic structures, namely zwitterionic liposomes of dipalmitoyl phosphatidylcholine (DPPC) and calf-thymus DNA (CT DNA). Through intrinsic Trp fluorescence we determined that the peptide affinity for fluid DPPC bilayers follows the decreasing order: D0W6Hya1 (+2) > W6Hya1 (+3) ¼ K0W6Hya1 (+4). Fluorescence data also indicate that the Trp residue in the more positively charged peptide, K0W6Hya1, is less deep in the bilayer than the residue in the other two peptides. This finding is supported by differential scanning calorimetry (DSC) data, which shows that both D0W6Hya1 and W6Hya1 disturb DPPC gel-fluid transition slightly more effectively than K0W6Hya1. DPPC DSC profiles are homogeneously disturbed by the three peptides, probably related to peptide-membrane diffusion. Surprisingly, the peptide that displays the lowest affinity for PC membranes and is located at the more superficial position in the bilayer, K0W6Hya1, is the most efficient in causing formation of pores on the membrane, as attested by carboxyfluorescein leakage assays. The three peptides were found to interact with CT DNA, with a deep penetration of the Trp residue into hydrophobic pockets of the double helix, as indicated by the significant blue shift on the Trp fluorescence, and the displacement of DNA-bound ethidium bromide by the peptides. The experiments of DNA electrophoresis confirm that Hylin peptides bind DNA in a concentration-dependent manner, inducing complete DNA retardation at the relative AMP/plasmid DNA weight ratio of ~17. These findings could help to better understand the AMPs toxic effects on eukaryotic cells, thus contributing to the design of healthier therapeutic agents.

15.
Rev Med Liege ; 75(10): 660-664, 2020 Oct.
Artículo en Francés | MEDLINE | ID: mdl-33030842

RESUMEN

Spinal cord injury can have widespread consequences beyond the disruption of sensory and motor functions. Injury at or above the sixth thoracic spinal cord segment frequently leads to dysregulation of the autonomic nervous system, which results in a syndrome called autonomic hyperreflexia or dysreflexia. It is a hypertensive crisis triggered by visceral or somatic stimuli below the level of the injury and caused by sympathetic spinal reflexes not modulated by regulatory centers in the brain. Patients with spinal cord injuries frequently undergo surgery for multiple reasons. Because of the potentially lethal complications of autonomic hyperreflexia, physicians, and in particular anaesthesiologists, must be aware of the underlying pathophysiological mechanisms and adequate perioperative management.


Les lésions de la moelle épinière peuvent avoir de nombreuses conséquences autres que la perturbation des fonctions sensitives et motrices. Une lésion d'un niveau médullaire supérieur ou égal au sixième segment thoracique (T6) entraîne, fréquemment, une dysrégulation du système nerveux autonome et le développement d'un syndrome appelé hyperréflexie ou dysréflexie autonome. Il s'agit d'une crise hypertensive déclenchée par des stimuli viscéraux ou somatiques sous le niveau de la lésion et causée par des réflexes sympathiques médullaires non modulés par les centres régulateurs encéphaliques. Les patients porteurs de lésions médullaires bénéficient, régulièrement, d'interventions chirurgicales pour des raisons multiples. Les complications potentiellement létales de l'hyperréflexie autonome exigent des médecins et, en particulier, des anesthésistes-réanimateurs une connaissance des mécanismes physiopathologiques sous-jacents et une prise en charge péri-interventionnelle adéquate.


Asunto(s)
Disreflexia Autónoma , Traumatismos de la Médula Espinal , Disreflexia Autónoma/etiología , Disreflexia Autónoma/terapia , Humanos , Reflejo , Traumatismos de la Médula Espinal/complicaciones
16.
Chem Phys Lipids ; 232: 104963, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32882224

RESUMEN

α-galactosylceramide (α-GalCer; KRN7000) strongly stimulates NKT cells. The structures of α-GalCer assemblies and of cationic DODAB bilayers containing α-GalCer were investigated by differential scanning calorimetry (DSC) and electron spin resonance (ESR) spectroscopy. Assemblies of α-GalCer have a very tightly packed gel phase, causing spin labels to cluster and display spin exchange interactions. An endothermic phase transition is observed by DSC, leading to a fluid phase. This phase transition peak disappears upon mixing with DODAB, showing that up to 9 mol% α-GalCer is miscible with the cationic lipid. ESR spectra show that α-GalCer decreases DODAB gel phase packing, resulting in a decrease of gel-fluid transition temperature and cooperativity in DSC thermograms of mixed bilayers. In contrast, α-GalCer increases the rigidity of the fluid phase. These effects are probably due to the conformation of the rigid amide bond that connects the phytosphingosine base of α-GalCer to its long and saturated acyl chain. Possibly, α-GalCer adopts a V-shaped conformation because of the perpendicular orientation of the amide bond towards the axes of the hydrocarbon chains. Apparently, the effect of the amide bond configuration is a key structural feature for the interaction between ceramide-based glycolipids and DODAB molecules, since we have previously reported a similar decrease of gel phase packing and increase in fluid phase rigidity for DODAB bilayers containing C24:1ß-glucosylceramide. Since the structure of delivery systems is critical to the biological activity of α-GalCer, this work certainly contributes to the planning and development of novel immunotherapeutic tools.


Asunto(s)
Galactosilceramidas/química , Membrana Dobles de Lípidos/química , Compuestos de Amonio Cuaternario/química , Glicosilación , Modelos Moleculares , Conformación Molecular , Temperatura de Transición
17.
Biochim Biophys Acta Biomembr ; 1861(3): 643-650, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30611744

RESUMEN

The effect of 5 mol%, 9 mol%, and 16 mol% of C24:1 ß-glucosylceramide (ßGlcCer) on the structure of cationic DODAB bilayers was investigated by means of differential scanning calorimetry (DSC), electron spin resonance (ESR) spectroscopy and fluorescence microscopy. ßGlcCer is completely miscible with DODAB at all fractions tested, since no domains were observed in fluorescence microscopy or ESR spectra. The latter showed that ßGlcCer destabilized the gel phase of DODAB bilayers by decreasing the gel phase packing. As a consequence, ßGlcCer induced a decrease in the phase transition temperature and cooperativity of DODAB bilayers, as seen in DSC thermograms. ESR spectra also showed that ßGlcCer induced an increase in DODAB fluid phase order and/or rigidity. Despite their different structures, a similar effect of loosening the gel phase packing and turning the fluid phase more rigid/organized has also been observed when low molar fractions of cholesterol were incorporated in DODAB bilayers. The structural characterization of mixed membranes made of cationic lipids and glucosylceramides may be important for developing novel immunotherapeutic tools such as vaccine adjuvants.


Asunto(s)
Glucosilceramidas/química , Membrana Dobles de Lípidos/química , Compuestos de Amonio Cuaternario/química , Rastreo Diferencial de Calorimetría , Cationes/química , Espectroscopía de Resonancia por Spin del Electrón , Liposomas/química , Microscopía Fluorescente , Transición de Fase , Temperatura , Termodinámica , Temperatura de Transición
18.
Langmuir ; 34(5): 2014-2025, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29284086

RESUMEN

Considering the known different mode of action of antimicrobial peptides in zwitterionic and anionic cell membranes, the present work compares the action of the antimicrobial peptide K0-W6-Hya1 (KIFGAIWPLALGALKNLIK-NH2) with zwitterionic and negatively charged model membranes, namely, liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, and a mixture of the two. Differential scanning calorimetry (DSC), steady state fluorescence of the Trp residue, dynamic light scattering (DLS), and measurement of the leakage of an entrapped fluorescent dye (carboxyfluorescein, CF) were performed with large unilamellar vesicles (LUVs). All techniques evidenced the different action of the peptide in zwitterionic and anionic vesicles. Trp fluorescence spectroscopy shows that the differences are related not only to the partition of the cationic peptide in zwitterionic and anionic membranes, but also to the different penetration depth of the peptide into the lipid bilayers: Trp goes deeper into negatively charged membranes, both in the gel and fluid phases, than into zwitterionic ones. DSC shows that the peptide is strongly attached to anionic bilayers, giving rise to the coexistence of two different lipid regions, one depleted of peptide and another one peptide-disturbed, possibly a stable or transient polar pore, considering the leakage of CF. This contrasts with the homogeneous effect produced by the peptide in zwitterionic membranes, probably related to peptide-membrane diffusion. Moreover, in mixed bilayers (PC:PG), the peptide sequesters negatively charged lipids, creating peptide-rich anionic lipid regions, strongly disturbing the membrane. The distinct structural interaction displayed by the peptide in PC and PG membranes could be related to the different mechanisms of action of the peptide in anionic prokaryotic and zwitterionic eukaryotic cell membranes.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Lípidos de la Membrana/química , Péptidos/química , Péptidos/farmacología , Secuencia de Aminoácidos
19.
Biophys Rev ; 9(5): 729-745, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28940105

RESUMEN

Emodin is one of the most abundant anthraquinone derivatives found in nature. It is the active principle of some traditional herbal medicines with known biological activities. In this work, we combined experimental and theoretical studies to reveal information about location, orientation, interaction and perturbing effects of Emodin on lipid bilayers, where we have taken into account the neutral form of the Emodin (EMH) and its anionic/deprotonated form (EM-). Using both UV/Visible spectrophotometric techniques and molecular dynamics (MD) simulations, we showed that both EMH and EM- are located in a lipid membrane. Additionally, using MD simulations, we revealed that both forms of Emodin are very close to glycerol groups of the lipid molecules, with the EMH inserted more deeply into the bilayer and more disoriented relative to the normal of the membrane when compared with the EM-, which is more exposed to interfacial water. Analysis of several structural properties of acyl chains of the lipids in a hydrated pure DMPC bilayer and in the presence of Emodin revealed that both EMH and EM- affect the lipid bilayer, resulting in a remarkable disorder of the bilayer in the vicinity of the Emodin. However, the disorder caused by EMH is weaker than that caused by EM-. Our results suggest that these disorders caused by Emodin might lead to distinct effects on lipid bilayers including its disruption which are reported in the literature.

20.
Biophys Rev ; 9(5): 633-647, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28836112

RESUMEN

Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...