Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2309296, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065546

RESUMEN

Downsizing silicon-based transistors can result in lower power consumption, faster speeds, and greater computational capacity, although it is accompanied by the appearance of short-channel effects. The integration of high-mobility 2D semiconductor channels with ultrathin high dielectric constant (high-κ) dielectric in transistors is expected to suppress the effect. Nevertheless, the absence of a high-κ dielectric layer featuring an atomically smooth surface devoid of dangling bonds poses a significant obstacle in the advancement of 2D electronics. Here, ultrathin van der Waals (vdW) lanthanum oxychloride (LaOCl) dielectrics are successfully synthesized by precisely controlling the growth kinetics. These dielectrics demonstrate an impressive high-κ value of 10.8 and exhibit a remarkable breakdown field strength (Ebd ) exceeding 10 MV cm-1 . Remarkably, the conventional molybdenum disulfide (MoS2 ) field-effect transistor (FET) featuring a dielectric made of LaOCl showcases an almost negligible hysteresis when compared to FETs employing alternative gate dielectrics. This can be attributed to the flawlessly formed vdW interface and excellent compatibility established between LaOCl and MoS2 . These findings will motivate the further exploration of rare-earth oxychlorides and the development of more-than-Moore nanoelectronic devices.

2.
Nat Commun ; 14(1): 7225, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37940641

RESUMEN

Interlayer coupling strength dichotomizes two-dimensional (2D) materials into layered and non-layered types. Traditionally, they can be regarded as atomic layers intrinsically linked via van der Waals (vdW) forces or covalent bonds, oriented orthogonally to their growth plane. In our work, we report a material system that differentiates from layered and non-layered materials, termed quasi-layered domino-structured (QLDS) materials, effectively bridging the gap between these two typical categories. Considering the skewed structure, the force orthogonal to the 2D QLDS-GaTe growth plane constitutes a synergistic blend of vdW forces and covalent bonds, with neither of them being perpendicular to the 2D growth plane. This unique amalgamation results in a force that surpasses that in layered materials, yet is weaker than that in non-layered materials. Therefore, the lattice constant contraction along this unique orientation can be as much as 7.7%, tantalizingly close to the theoretical prediction of 10.8%. Meanwhile, this feature endows remarkable anisotropy, second harmonic generation enhancement with a staggering susceptibility of 394.3 pm V-1. These findings endow further applications arranged in nonlinear optics, sensors, and catalysis.

3.
Nanoscale Adv ; 5(21): 5799-5809, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37881712

RESUMEN

MXenes, two-dimensional nanomaterials, are gaining traction in catalysis and biomedicine. Yet, their oxidation instability poses significant functional constraints. Gaining insight into this oxidation dynamic is pivotal for designing MXenes with tailored functionalities. Herein, we crafted VOxC nanosheets by oxidatively engineering V4C3 MXene. Interestingly, while pristine V4C3 displays pronounced antioxidant behavior, its derived VOxC showcases enhanced peroxidase-like activity, suggesting the crossover between antioxidant and pro-oxidant capability. The mixed valence states and balanced composition of V in VOxC drive the Fenton reaction through multiple pathways to continually generate hydroxyl radicals, which was proposed as the mechanism underlying the peroxidase-like activity. Furthermore, this unique activity rendered VOxC effective in dopamine and glutathione detection. These findings underscore the potential of modulating MXenes' oxidation state to elicit varied catalytic attributes, providing an avenue for the judicious design of MXenes and derivatives for bespoke applications.

4.
Adv Mater ; 35(20): e2210828, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36896838

RESUMEN

2D room-temperature magnetic materials are of great importance in future spintronic devices while only very few are reported. Herein, a plasma-enhanced chemical vapor deposition approach is exploited to construct the 2D room-temperature magnetic MnGa4 -H single crystal with a thickness down to 2.2 nm. The employment of H2 plasma makes hydrogen atoms can be easily inserted into the MnGa4 lattice to modulate the atomic distance and charge state, thereby ferrimagnetism can be achieved without destroying the structural configuration. The as-obtained 2D MnGa4 -H crystal is high-quality, air-stable, and thermo-stable, demonstrating robust and stable room-temperature magnetism with a high Curie temperature above 620 K. This work enriches the 2D room-temperature magnetic family and opens up the possibility for the development of spintronic devices based on 2D magnetic alloys.

5.
J Am Chem Soc ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706380

RESUMEN

Two-dimensional (2D) transition-metal borides (TMBs) are especially expected to exhibit excellent performance in various fields among electricity, superconductivity, magnetism, mechanics, biotechnology, battery, and catalysis. However, the synthesis of ultrathin TMB single crystals with ultrahigh phase purity was deemed extremely challenging and has not been realized till date. That is because TMBs have the most kinds of crystal structures among inorganic compounds, which possess generous phase structures with similar formation energies compared with other transition-metal compounds, attributing to the metalloid and electron-deficient characteristics of boron. Herein, for the first time, we demonstrate a chemical potential-modulated strategy to realize the precise synthesis of various ultrahigh-phase-purity (approximately 100%) ultrathin TMB single crystals, and the precision in the phase formation energy can reach as low as 0.01 eV per atom. The ultrathin MoB2 single crystals exhibit an ultrahigh Young's modulus of 517 GPa compared to other 2D materials. Our work establishes a chemical potential-modulated strategy to synthesize ultrathin single crystals with ultrahigh phase purity, especially those with similar formation energies, and undoubtedly provides excellent platforms for their extensive research and applications.

6.
Small ; 18(41): e2204595, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36089669

RESUMEN

Ultralow thermal conductivity materials have triggered much interest due to diverse applications in thermal insulation, thermal barrier coating, and especially thermoelectrics. Two dimensional (2D) indium tellurides with ultralow thermal conductivity provide a versatile platform for tailoring the heat transfer, exploring new candidates for thermoelectrics, and achieving miniature, lightweight, and highly integrated devices. Unfortunately, their nanostructure and structure-related heat transfer properties at a 2D scale are much less studied due to difficulties in material fabrication. The ionic character between interlayers and strong covalent bonds in 3D directions impede the anisotropic growth of indium telluride flakes; meanwhile, the low environmental stability and chemical reactivity of tellurium also limit the fabrication of high-quality tellurides, thus hindering the exploration of thermal transport properties. Here, a self-modulation-guided growth strategy to synthesize high-quality 2D In4 Te3 single crystals with ultralow thermal conductivity (0.47 W m-1  K-1 ) is developed. This strategy can also be extended to synthesize a series of highly crystallized metal tellurides, providing excellent candidates for further application in thermoelectrics.

7.
Adv Mater ; 34(27): e2202479, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35471773

RESUMEN

Optimizing the intrinsic activity of active sites is an appealing strategy for accelerating the kinetics of the catalytic process. Here, a design principle, namely "dual self-built gating", is proposed to tailor the electronic structures of catalysts. Catalytic improvement is confirmed in a model catalyst with a ReS2 -WS2 /WS2 hybridized heterostructure. As demonstrated in experimental and theoretical results, the dual gating can bidirectionally guide electron transfer and redistribute at the interface, endowing the model catalyst with an electron-rich region. The tailored electronic structures balance the adsorption of intermediates and the desorption of hydrogen synergistically to enhance the reaction kinetics for the hydrogen evolution reaction. Interestingly, the effect of dual gating can be easily amplified by the electric field. The overpotential and Tafel slope (49 mV, 35 mV dec-1 ) obtained under the electric field for ReS2 -WS2 /WS2 catalyst with the dual self-built gating effect are far below than those (210 mV, 116 mV dec-1 ) of the pure WS2 catalyst, which exhibits nearly four times improvement. The concept of dual gating can be applied to more systems, offering a new guideline for designing advanced electrocatalysts.

8.
Small ; 18(9): e2106341, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34908232

RESUMEN

Germanium, the prime applied semiconductor, is widely used in solid-state electronics and photoelectronics. Unfortunately, since the 3D diamond-like structure with strong covalent bonds impedes the 2D anisotropic growth, only the examples of ultrathin Ge along the (111) plane have been investigated, much less to the controllable synthesis along another crystal surface. Meanwhile, Ge(111) flakes are limited in semiconductor applications because of their gapless property. Here, ultrathin Ge(110) single crystal is synthesized with semiconductive property via gallium-associated self-limiting growth. The obtained ultrathin Ge(110) single crystal exhibits anisotropic honeycomb structure, uniformly incremental lattice, wide tunable direct-bandgap, blue-shifted photoluminescence emission, and unique phonon modes, which are consistent with the previous theoretical predictions. It also confirms excellent second harmonic generation and high hole mobility of 724 cm2 V-1 s-1 . The realization of ultrathin Ge(110) single crystal will provide an excellent candidate for application in electronics and optoelectronics.

9.
Nat Commun ; 11(1): 3979, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32769968

RESUMEN

Ultra-thin III-V semiconductors, which exhibit intriguing characteristics, such as two-dimensional (2D) electron gas, enhanced electron-hole interaction strength, and strongly polarized light emission, have always been anticipated in future electronics. However, their inherent strong covalent bonding in three dimensions hinders the layer-by-layer exfoliation, and even worse, impedes the 2D anisotropic growth. The synthesis of desirable ultra-thin III-V semiconductors is hence still in its infancy. Here we report the growth of a majority of ultra-thin III-V single crystals, ranging from ultra-narrow to wide bandgap semiconductors, through enhancing the interfacial interaction between the III-V crystals and the growth substrates to proceed the 2D layer-by-layer growth mode. The resultant ultra-thin single crystals exhibit fascinating properties of phonon frequency variation, bandgap shift, and giant second harmonic generation. Our strategy can provide an inspiration for synthesizing unexpected ultra-thin non-layered systems and also drive exploration of III-V semiconductor-based electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA