Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Funct Plant Biol ; 48(12): 1254-1263, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600600

RESUMEN

Kiwifruit (Actinidia chinensis) is rich in nutritional and medicinal value. However, the organism responsible for grey mould, Botrytis cinerea, causes great economic losses and food safety problems to the kiwifruit industry. Understanding the molecular mechanism underlying postharvest kiwifruit responses to B. cinerea is important for preventing grey mould decay and enhancing resistance breeding. Kiwifruit cv. 'Hongyang' was used as experimental material. The AcPGIP gene was cloned and virus-induced gene silencing (VIGS) was used to explore the function of the polygalacturonase inhibiting protein (PGIP) gene in kiwifruit resistance to B. cinerea. Virus-induced silencing of AcPGIP resulted in enhanced susceptibility of kiwifruit to B. cinerea. Antioxidant enzymes, secondary metabolites and endogenous hormones were analysed to investigate kiwifruit responses to B. cinerea infection. Kiwifruit effectively activated antioxidant enzymes and secondary metabolite production in response to B. cinerea, which significantly increased Indole-3-acetic acid (IAA), gibberellin 3 (GA3) and abscisic acid (ABA) content relative to those in uninfected fruit. Silencing of AcPGIP enabled kiwifruit to quickly activate hormone-signaling pathways through an alternative mechanism to trigger defence responses against B. cinerea infection. These results expand our understanding of the regulatory mechanism for disease resistance in kiwifruit; further, they provide gene-resource reserves for molecular breeding of kiwifruit for disease resistance.


Asunto(s)
Actinidia , Ácido Abscísico , Botrytis , Frutas
2.
BMC Plant Biol ; 20(1): 557, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302873

RESUMEN

BACKGROUND: Elucidation of the regulatory mechanism of kiwifruit response to gray mold disease caused by Botrytis cinerea can provide the basis for its molecular breeding to impart resistance against this disease. In this study, 'Hongyang' kiwifruit served as the experimental material; the TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressor gene AcTPR2 was cloned into a pTRV2 vector (AcTPR2-TRV) and the virus-induced gene silencing technique was used to establish the functions of the AcTPR2 gene in kiwifruit resistance to Botrytis cinerea. RESULTS: Virus-induced silencing of AcTPR2 enhanced the susceptibility of kiwifruit to Botrytis cinerea. Defensive enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and phenylalanine ammonia-lyase (PAL) and endogenous phytohormones such as indole acetic acid (IAA), gibberellin (GA3), abscisic acid (ABA), and salicylic acid (SA) were detected. Kiwifruit activated these enzymes and endogenous phytohormones in response to pathogen-induced stress and injury. The expression levels of the IAA signaling genes-AcNIT, AcARF1, and AcARF2-were higher in the AcTPR2-TRV treatment group than in the control. The IAA levels were higher and the rot phenotype was more severe in AcTPR2-TRV kiwifruits than that in the control. These results suggested that AcTPR2 downregulation promotes expression of IAA and IAA signaling genes and accelerates postharvest kiwifruit senescence. Further, Botrytis cinerea dramatically upregulated AcTPR2, indicating that AcTPR2 augments kiwifruit defense against pathogens by downregulating the IAA and IAA signaling genes. CONCLUSIONS: The results of the present study could help clarify the regulatory mechanisms of disease resistance in kiwifruit and furnish genetic resources for molecular breeding of kiwifruit disease resistance.


Asunto(s)
Actinidia/genética , Botrytis/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Actinidia/metabolismo , Actinidia/microbiología , Botrytis/fisiología , Catalasa/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/microbiología , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Superóxido Dismutasa/metabolismo
3.
Gene ; 518(2): 360-7, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23333605

RESUMEN

Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Geraniltranstransferasa/genética , Sesquiterpenos/metabolismo , Zingiberaceae/enzimología , Zingiberaceae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Flores/genética , Flores/metabolismo , Geraniltranstransferasa/metabolismo , Herbivoria , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poliisoprenilo/biosíntesis , ARN Mensajero/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Zingiberaceae/metabolismo
4.
Zhong Yao Cai ; 36(7): 1043-6, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24417134

RESUMEN

OBJECTIVE: To improve salt resistance of Lonicera macranthoides seedlings and provide reference for its cultivation of salt tolerance. METHODS: Pretreatment of seedlings with abscisic acid (ABA) of different concentrations were used to study the effect of ABA on their physiological and biochemical characteristics under 200 mmol/L NaCl for 7 days. RESULTS: Exogenous ABA significantly decreased the content of malondialdehyde (MDA), increased the contents of chlorophyll, soluble sugar, soluble protein and activities of protected enzymes such as peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD). CONCLUSION: It is proposed that exogenous ABA as chemical activator can induce salt resistance and decrease alleviate damage degree of salt stress of Lonicera macranthoides seedlings in a dose-dependent manner.


Asunto(s)
Ácido Abscísico/farmacología , Lonicera/efectos de los fármacos , Malondialdehído/metabolismo , Plantones/efectos de los fármacos , Cloruro de Sodio/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Lonicera/metabolismo , Lonicera/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Plantones/fisiología , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...