Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Abdom Radiol (NY) ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294319

RESUMEN

PURPOSE: Ultrasound and multi-slice spiral computed tomography (CT) are frequently used to assist the diagnosis of acute appendicitis (AA), and the examination results may vary among different demographics. This study aimed to compare the diagnostic accuracy of ultrasound and CT for AA. METHODS: We performed a retrospective analysis of patients diagnosed with AA who underwent emergency surgery at our hospital from March 2021 to August 2023, with postoperative pathological results as the gold standard. Differences in the diagnostic accuracy of ultrasound and CT for different types of AA, age groups, and body mass index (BMI) values were then analyzed. RESULTS: The overall sample comprised 279 confirmed cases of AA, with 64 cases of simple appendicitis, 127 cases of suppurative appendicitis, and 88 cases of gangrenous appendicitis. For these three pathological classifications, the diagnostic accuracy of ultrasound was 68.75% (44/64), 73.22% (93/127), and 81.81% (72/88), respectively, while the diagnostic accuracy of CT was 71.87% (46/64), 82.67% (105/127), and 90.90% (80/88), respectively. There was no statistically significant difference in the overall diagnostic accuracy between the two methods (P > 0.05). Subgroup analysis showed no difference in diagnostic accuracy between the two methods for patients with normal BMI (P > 0.05). However, for overweight, obese, and elderly patients, CT provided significantly better diagnostic accuracy than ultrasound (P < 0.05). CONCLUSION: While ultrasound and CT have similar diagnostic accuracy for different pathological types of AA, CT is more accurate for overweight, obese, and elderly patients.

2.
PLoS Pathog ; 20(9): e1012535, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39255317

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.


Asunto(s)
Ciclo Celular , Proliferación Celular , Herpesvirus Humano 8 , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiología , Metilación , Antígenos Virales/metabolismo , Antígenos Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ciclina D2/metabolismo , Células HEK293 , Replicación Viral/fisiología , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Proteínas Nucleares
3.
Sci Adv ; 10(32): eadn9519, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110796

RESUMEN

While the significance of N6-methyladenosine (m6A) in viral regulation has been extensively studied, the functions of 5-methylcytosine (m5C) modification in viral biology remain largely unexplored. In this study, we demonstrate that m5C is more abundant than m6A in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a comprehensive profile of the m5C landscape of SARS-CoV-2 RNA. Knockout of NSUN2 reduces m5C levels in SARS-CoV-2 virion RNA and enhances viral replication. Nsun2 deficiency mice exhibited higher viral burden and more severe lung tissue damages. Combined RNA-Bis-seq and m5C-MeRIP-seq identified the NSUN2-dependent m5C-methylated cytosines across the positive-sense genomic RNA of SARS-CoV-2, and the mutations of these cytosines enhance RNA stability. The progeny SARS-CoV-2 virions from Nsun2 deficiency mice with low levels of m5C modification exhibited a stronger replication ability. Overall, our findings uncover the vital role played by NSUN2-mediated m5C modification during SARS-CoV-2 replication and propose a host antiviral strategy via epitranscriptomic addition of m5C methylation to SARS-CoV-2 RNA.


Asunto(s)
COVID-19 , ARN Viral , SARS-CoV-2 , Replicación Viral , Replicación Viral/genética , Animales , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , COVID-19/virología , COVID-19/patología , Ratones , Humanos , Metilación , Virulencia/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Epigénesis Genética , Ratones Noqueados , Adenosina/análogos & derivados , Adenosina/metabolismo , Transcriptoma
4.
Int J Biol Macromol ; 279(Pt 1): 135175, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39214204

RESUMEN

Sustainable and environment friendly natural-based adhesive has been considered as an optimum alternative of industrial adhesive which is non-renewable and harmful to health. Cellulose is the most abundant natural polymer in nature and has potential applications in the field of adhesives. However, the inherent hydrophilic nature of cellulose-based adhesive significantly challenges its use in high humidity environments. In this paper, a highly hydrophobic and anti-swelling cellulose-based adhesive was prepared by epoxy modification of microcrystalline cellulose (MCC). The simultaneous enhancement of adhesive and cohesive properties is achieved through the reaction of epoxy groups with the hydroxyl groups from the wood and adhesive during the hot-pressing process. Prepared adhesive has excellent properties in extremely humid environments. The dry bonding strength of the prepared adhesive reached 6.02 ± 0.26 MPa, while the wet bonding strength was 4.78 ± 0.21 MPa after immersed in water at 63 °C for 3 h. Furthermore, the bonding strength remained largely stable in 90 % atmospheric humidity. The adhesive has a certain universality, which can bond to substrates such as aluminium, iron, and glass. This study presents an innovative approach to the manufacturing of cellulose-based adhesive with enhanced bonding performance and exceptional water resistance.


Asunto(s)
Adhesivos , Celulosa , Humedad , Celulosa/química , Adhesivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Epoxi/química
5.
Drug Metab Dispos ; 52(11): 1234-1243, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39214664

RESUMEN

Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 µM and kcat of 3.2 and 2.6 minutes-1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT: The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.


Asunto(s)
Ácidos y Sales Biliares , Microsomas Hepáticos , Esteroide 12-alfa-Hidroxilasa , Humanos , Hidroxilación , Microsomas Hepáticos/metabolismo , Ácidos y Sales Biliares/metabolismo , Animales , Esteroide 12-alfa-Hidroxilasa/metabolismo , Esteroide 12-alfa-Hidroxilasa/genética , Proteínas Recombinantes/metabolismo , Ratones , Ratas , Catálisis
6.
BMC Infect Dis ; 24(1): 720, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039487

RESUMEN

BACKGROUND: Antiretroviral therapy (ART) has transformed HIV management, with various regimens available. Dolutegravir (DTG) plus lamivudine (3TC) dual therapy is now the one of the first line regimens. METHODS: A retrospective, observational study included treatment naïve people living with HIV (PLWH) with baseline HIV RNA viral load (VL) greater than 500,000 copies/mL from March 2020 to June 2022. PLWH on DTG + 3TC were included in the 2DR group, while others on INSTI-based three-drug regimens were divided in the 3DR group. Viral suppression, immunological recovery, and safety were assessed. RESULTS: The study included 52 PLWH, with no significant baseline differences. Virologic suppression rates at weeks 24 and 48 were similar in both groups, even with baseline HIV RNA VL greater than 1,000,000 copies/mL. CD4 + T cell counts improved rapidly. No serious adverse effects were reported. CONCLUSIONS: DTG + 3TC dual therapy demonstrates effectiveness in treatment naïve PLWH with high baseline HIV RNA VL, suggesting its potential as a first line regimen for all treatment naïve PLWH.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Compuestos Heterocíclicos con 3 Anillos , Lamivudine , Oxazinas , Piridonas , Carga Viral , Humanos , Estudios Retrospectivos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Carga Viral/efectos de los fármacos , Femenino , Masculino , Piridonas/uso terapéutico , Lamivudine/uso terapéutico , Lamivudine/administración & dosificación , Adulto , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Oxazinas/uso terapéutico , Persona de Mediana Edad , Recuento de Linfocito CD4 , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/administración & dosificación , Piperazinas/uso terapéutico , VIH-1/efectos de los fármacos , Quimioterapia Combinada , ARN Viral/sangre , Resultado del Tratamiento
7.
Virol Sin ; 39(4): 632-644, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945214

RESUMEN

Hand, foot and mouth disease (HFMD), mainly caused by enterovirus 71 (EV71), has frequently occurred in the Asia-Pacific region, posing a significant threat to the health of infants and young children. Therefore, research on the infection mechanism and pathogenicity of enteroviruses is increasingly becoming important. The 3D polymerase, as the most critical RNA-dependent RNA polymerase (RdRp) for EV71 replication, is widely targeted to inhibit EV71 infection. In this study, we identified a novel host protein, AIMP2, capable of binding to 3D polymerase and inhibiting EV71 infection. Subsequent investigations revealed that AIMP2 recruits the E3 ligase SMURF2, which mediates the polyubiquitination and degradation of 3D polymerase. Furthermore, the antiviral effect of AIMP2 extended to the CVA16 and CVB1 serotypes. Our research has uncovered the dynamic regulatory function of AIMP2 during EV71 infection, revealing a novel antiviral mechanism and providing new insights for the development of antienteroviral therapeutic strategies.


Asunto(s)
Enterovirus Humano A , Ubiquitina-Proteína Ligasas , Replicación Viral , Humanos , Línea Celular , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/genética , Células HEK293 , Interacciones Huésped-Patógeno , Proteolisis , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
PeerJ ; 12: e17545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938612

RESUMEN

Background: Patients with lung adenocarcinoma (LUAD) often develop a poor prognosis. Currently, researches on prognostic and immunotherapeutic capacity of aneuploidy-related genes in LUAD are limited. Methods: Genes related to aneuploidy were screened based on bulk RNA sequencing data from public databases using Spearman method. Next, univariate Cox and Lasso regression analyses were performed to establish an aneuploidy-related riskscore (ARS) model. Results derived from bioinformatics analysis were further validated using cellular experiments. In addition, typical LUAD cells were identified by subtype clustering, followed by SCENIC and intercellular communication analyses. Finally, ESTIMATE, ssGSEA and CIBERSORT algorithms were employed to analyze the potential relationship between ARS and tumor immune environment. Results: A five-gene ARS signature was developed. These genes were abnormally high-expressed in LUAD cell lines, and in particular the high expression of CKS1B promoted the proliferative, migratory and invasive phenotypes of LUAD cell lines. Low ARS group had longer overall survival time, higher degrees of inflammatory infiltration, and could benefit more from receiving immunotherapy. Patients in low ASR group responded more actively to traditional chemotherapy drugs (Erlotinib and Roscovitine). The scRNA-seq analysis annotated 17 cell subpopulations into seven cell clusters. Core transcription factors (TFs) such as CREB3L1 and CEBPD were enriched in high ARS cell group, while TFs such as BCLAF1 and UQCRB were enriched in low ARS cell group. CellChat analysis revealed that high ARS cell groups communicated with immune cells via SPP1 (ITGA4-ITGB1) and MK (MDK-NCl) signaling pathways. Conclusion: In this research, integrative analysis based on the ARS model provided a potential direction for improving the diagnosis and treatment of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Aneuploidia , Neoplasias Pulmonares , Análisis de la Célula Individual , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Pronóstico , Análisis de la Célula Individual/métodos , Quinasas CDC2-CDC28/genética , Quinasas CDC2-CDC28/metabolismo , Línea Celular Tumoral , Análisis de Secuencia de ARN/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Masculino
9.
Cell Death Dis ; 15(6): 458, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937437

RESUMEN

SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/inmunología , Humanos , Animales , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Células HEK293 , Ratones Endogámicos BALB C , Unión Proteica , Femenino
10.
Emerg Microbes Infect ; 13(1): 2353302, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38753462

RESUMEN

Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , COVID-19 , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , SARS-CoV-2 , Animales , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Ratones , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Humanos , Pulmón/virología , Pulmón/patología , Tratamiento Farmacológico de COVID-19 , Queratina-18/genética , Carga Viral , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Técnicas de Sustitución del Gen , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino
11.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793630

RESUMEN

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Inmunidad Innata , Transducción de Señal , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , ADN Viral/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Sarcoma de Kaposi/virología , Nucleotidiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Animales , Proteínas de la Membrana/metabolismo , Proteínas Nucleares , Fosfoproteínas
12.
World J Gastrointest Surg ; 16(5): 1371-1376, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38817278

RESUMEN

BACKGROUND: Appendectomy is an acute abdominal surgery that is often accompanied by severe abdominal inflammation. Oral probiotics are one of the postoperative treatments for rapid rehabilitation. However, there is a lack of prospective studies on this topic after appendectomy. AIM: To investigate whether the postoperative probiotics can modulate the inflammatory response and restore intestinal function in patients following appendectomy. METHODS: This was a prospective, randomized trial. A total of 60 emergency patients were randomly divided into a control group (n = 30) and a probiotic group (n = 30). Patients in the control group started to drink some water the first day after surgery, and those in the probiotic group were given water supplemented with Bacillus licheniformis capsules for 5 consecutive days postsurgery. The indices of inflammation and postoperative conditions were recorded, and the data were analyzed with RStudio 4.3.2 software. RESULTS: A total of 60 participants were included. Compared with those in the control group, the C-reactive protein (CRP), interleukin 6 and procalcitonin (PCT) levels were significantly lower in the probiotic group at 2 d after surgery (P = 2.224e-05, P = 0.037, and P = 0.002, respectively, all P < 0.05). This trend persisted at day 5 post-surgery, with CRP and PCT levels remaining significantly lower in the probiotic group (P = 0.001 and P = 0.043, both P < 0.05). Furthermore, probiotics resulted in a shorter time to first flatus and a greater percentage of gram-negative bacilli in the feces (P = 0.035, P = 0.028, both P < 0.05). CONCLUSION: Postoperative oral administration of probiotics may modulate the gut microbiota, benefit the recovery of the early inflammatory response, and subsequently enhance recovery after appendectomy.

13.
J Med Chem ; 67(11): 8791-8816, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38775356

RESUMEN

The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 µM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.


Asunto(s)
Antivirales , Interacciones Hidrofóbicas e Hidrofílicas , Tiourea , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Perros , Animales , Tiourea/farmacología , Tiourea/análogos & derivados , Tiourea/química , Relación Estructura-Actividad , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Proteolisis/efectos de los fármacos , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Farmacorresistencia Viral/efectos de los fármacos
14.
Sci Bull (Beijing) ; 69(16): 2580-2595, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38670853

RESUMEN

Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Ratones Transgénicos , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Virus de la Hepatitis B/genética , Humanos , Hepatitis B Crónica/patología , Hepatitis B Crónica/genética , Progresión de la Enfermedad , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Antígenos del Núcleo de la Hepatitis B/metabolismo , Antígenos del Núcleo de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/inmunología , Autofagia , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Hígado/virología , Apoptosis , Dinámicas Mitocondriales
15.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626263

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Asunto(s)
Aparato de Golgi , Herpesvirus Humano 8 , Lipoilación , Proteínas Virales , Virión , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Humanos , Virión/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral/fisiología , Células HEK293
16.
Signal Transduct Target Ther ; 9(1): 114, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678055

RESUMEN

Developing a mucosal vaccine against SARS-CoV-2 is critical for combatting the epidemic. Here, we investigated long-term immune responses and protection against SARS-CoV-2 for the intranasal vaccination of a triple receptor-binding domain (RBD) scaffold protein (3R-NC) adjuvanted with a flagellin protein (KFD) (3R-NC + KFDi.n). In mice, the vaccination elicited RBD-specific broad-neutralizing antibody responses in both serum and mucosal sites sustained at high level over a year. This long-lasting humoral immunity was correlated with the presence of long-lived RBD-specific IgG- and IgA-producing plasma cells, alongside the Th17 and Tfh17-biased T-cell responses driven by the KFD adjuvant. Based upon these preclinical findings, an open labeled clinical trial was conducted in individuals who had been primed with the inactivated SARS-CoV-2 (IAV) vaccine. With a favorable safety profile, the 3R-NC + KFDi.n boost elicited enduring broad-neutralizing IgG in plasma and IgA in salivary secretions. To meet the challenge of frequently emerged variants, we further designed an updated triple-RBD scaffold protein with mutated RBD combinations, which can induce adaptable antibody responses to neutralize the newly emerging variants, including JN.1. Our findings highlight the potential of the KFD-adjuvanted triple-RBD scaffold protein is a promising prototype for the development of a mucosal vaccine against SARS-CoV-2 infection.


Asunto(s)
Administración Intranasal , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Flagelina , SARS-CoV-2 , SARS-CoV-2/inmunología , Humanos , Flagelina/inmunología , Flagelina/genética , Flagelina/administración & dosificación , COVID-19/prevención & control , COVID-19/inmunología , Animales , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Femenino , Anticuerpos Antivirales/inmunología , Vacunación , Masculino , Adulto , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina A/inmunología , Persona de Mediana Edad
17.
Front Cell Infect Microbiol ; 14: 1381877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572316

RESUMEN

Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Infección Irruptiva , Estudios de Cohortes , Evasión Inmune , Anticuerpos Neutralizantes , Anticuerpos Antivirales
18.
HIV Med ; 25(6): 754-758, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38494173

RESUMEN

OBJECTIVES: Dolutegravir + lamivudine (DTG + 3TC) is a first-line regimen for people with HIV. However, there are still concerns about its efficacy in people with tuberculosis (TB)/HIV due to the lack of available evidence and drug-drug interaction with rifampicin. METHODS: A single-centre retrospective observational case series was conducted in Guangxi Zhuang Autonomous Region, China. We included all people with TB/HIV on combined use of once-daily (q.d.) dosing DTG + 3TC and rifampicin (RIF)-containing anti-TB regimens between 2020 and 2022. HIV-RNA, CD4 cell counts were collected and analysed. RESULTS: In all, 21 people with HIV (PWH) were included in this study. All the PWH were treatment-naïve and told to take DTG + 3TC q.d. with food. The median age was 53 years, and 71.43% were male. A total of 71.43% PWH had baseline viral load (VL) > 100 000 copies/mL, and 33.33% had baseline VL greater than 500 000 copies/mL. Only one PWH had CD4 cell count greater than 200 cells/µL, and the median CD4 count was 20 cells/µL. A total of 16 PWH started DTG + 3TC after initiation of the RIF-based anti-TB regimen, and the other five PWH initiated DTG + 3TC before the treatment of TB. All the PWH had at least 24 weeks of follow-up visits and all of the TB treatments were successful. A total of 20 PWH (95.24%) achieved viral suppression (VL <50 copies/mL). All detected viral loads between weeks 24 and 48 were less than 200 copies/mL. Among the PWH who started DTG + 3TC after the initiation of RIF-based anti-TB regimen, all achieved viral suppression by week 24 except the non-suppressed PWH. CD4 counts were greatly improved after antiretroviral treatment: the median CD4 counts were raised from 20 to 171 cells/µL at week 48. No serious adverse events were reported. CONCLUSIONS: This case series preliminarily validates the efficacy of DTG + 3TC q.d. with food when combined with RIF-based anti-TB regimens in people with TB/HIV.


Asunto(s)
Infecciones por VIH , Compuestos Heterocíclicos con 3 Anillos , Lamivudine , Oxazinas , Piridonas , Rifampin , Tuberculosis , Carga Viral , Humanos , Masculino , Estudios Retrospectivos , Lamivudine/uso terapéutico , Lamivudine/administración & dosificación , Femenino , Oxazinas/uso terapéutico , Persona de Mediana Edad , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Piridonas/uso terapéutico , Piridonas/administración & dosificación , Rifampin/uso terapéutico , Rifampin/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Tuberculosis/tratamiento farmacológico , Adulto , Recuento de Linfocito CD4 , Carga Viral/efectos de los fármacos , China , Piperazinas , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/administración & dosificación , Resultado del Tratamiento , Quimioterapia Combinada , Antituberculosos/uso terapéutico , Antituberculosos/administración & dosificación
19.
Environ Toxicol ; 39(5): 3014-3025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38317294

RESUMEN

BACKGROUND: Lung cancer is a very common cancer with poor prognosis and high mortality. Circular RNAs (circRNAs) have been confirmed to be related to the occurrence of lung cancer, and circ_0008133 has been found to be possibly related to lung cancer. METHODS: Expression of circ_0008133, miR-760, and mex-3 RNA binding family member A (MEX3A) messenger RNA (mRNA) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony number, migration, and invasion were assessed using cell counting kit-8 (CCK8), colony formation, wound healing, and transwell assays. Glucose consumption and lactate production were detected using commercial kits. Protein expression was measured using western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between miR-760 and circ_0008133 or MEX3A. The effects of circ_0008133 knockdown on tumor growth in vivo were examined by the nude mice expriment. Immunohistochemistry (IHC) assay analyzed Ki-67 expression. RESULTS: Circ_0008133 and MEX3A were markedly boosted in lung cancer tissues and cells. Circ_0008133 knockdown decreased lung cancer cell viability, glucose consumption, lactate production, colony formation, migration, and invasion. In mechanism, circ_0008133 might positively regulate MEX3A expression by sponging miR-760. Additionally, knockdown of circ_0008133 inhibited tumor growth in vivo. CONCLUSION: Circ_0008133 accelerated the progression of lung cancer by promoting glycolysis metabolism through the miR-760/MEX3A axis.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Animales , Ratones , Neoplasias Pulmonares/genética , Ratones Desnudos , Glucosa , Glucólisis/genética , Ácido Láctico , MicroARNs/genética , Proliferación Celular/genética , Línea Celular Tumoral
20.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38197631

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Herpesvirus Humano 8 , Infección Latente , Humanos , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/fisiología , FN-kappa B/metabolismo , Activación Viral , Latencia del Virus , Replicación Viral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...