Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1290600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046608

RESUMEN

Crabgrass (Digitaria sanguinalis) is a common malignant weed in corn fields in China. Recently, the acetolactate synthase (ALS) inhibitor, nicosulfuron, has shown decreasing efficacy against crabgrass. In order to elucidate the molecular basis of resistance to nicosulfuron in crabgrass, we conducted bioassays, combined with gene sequence analysis, relative expression and relative copy number analysis, to characterize resistance in crabgrass populations collected from Beijing, Heilongjiang, Jilin and Anhui provinces. Whole-plant dose-response results indicated that only population collected in Heilongjiang province (HLJ) had developed low level of resistance to nicosulfuron compared with the sensitive population (SD22). No known resistant mutation of ALS gene was found in HLJ population. The real-time fluorescence quantitative PCR results showed that the ALS gene copy number did not differ significantly between the HLJ and SD22 populations. However, the ALS gene expression in the HLJ was 2.07-fold higher than that of the SD22 population at 24 h after treatment with nicosulfuron. Pretreatment with the cytochrome P450 (CYP450) inhibitor malathion, piperonyl butoxide (PBO), and the glutathione S-transferase (GST) inhibitor 4-Chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl) all partially reversed HLJ resistance. Among them, the synergistic effect of PBO and nicosulfuron is the most significant. This is the first report of resistance to nicosulfuron in crabgrass through ALS gene overexpression and possible metabolic resistance.

2.
Pestic Biochem Physiol ; 197: 105650, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072525

RESUMEN

Wild oat (Avena fatua L.) is a common and problematic weed in wheat fields in China. In recent years, farmers found it increasingly difficult to control A. fatua using acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. The purpose of this study was to identify the molecular basis of clodinafop-propargyl resistance in A. fatua. In comparison to the S1496 population, whole dose response studies revealed that the R1623 and R1625 populations were 71.71- and 67.76-fold resistant to clodinafop-propargyl, respectively. The two resistant A. fatua populations displayed high resistance to fenoxaprop-p-ethyl (APP) and low resistance to clethodim (CHD) and pinoxaden (PPZ), but they were still sensitive to the ALS inhibitors mesosulfuron-methyl and pyroxsulam. An Ile-2041-Asn mutation was identified in both resistant individual plants. The copy number and relative expression of the ACCase gene in the resistant population were not significantly different from those in the S1496 population. Under the application of 2160 g ai ha -1 of clodinafop-propargyl, the fresh weight of the R1623 population was reduced to 74.9%; however, pretreatment with the application of the cytochrome P450 inhibitor malathion and the GST inhibitor NBD-Cl reduced the fresh weight to 50.91% and 47.16%, respectively, which proved the presence of metabolic resistance. This is the first report of an Ile-2041-Asn mutation and probable metabolic resistance in A. fatua, resulting in resistance to clodinafop-propargyl.


Asunto(s)
Avena , Herbicidas , Avena/genética , Poaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Mutación
3.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108267

RESUMEN

The green foxtail, Setaria viridis (L.) P. Beauv. (Poales: Poaceae), is a troublesome and widespread grass weed in China. The acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron has been intensively used to manage S. viridis, and this has substantially increased the selection pressure. Here we confirmed a 35.8-fold resistance to nicosulfuron in an S. viridis population (R376 population) from China and characterized the resistance mechanism. Molecular analyses revealed an Asp-376-Glu mutation of the ALS gene in the R376 population. The participation of metabolic resistance in the R376 population was proved by cytochrome P450 monooxygenases (P450) inhibitor pre-treatment and metabolism experiments. To further elucidate the mechanism of metabolic resistance, eighteen genes that could be related to the metabolism of nicosulfuron were obtained bythe RNA sequencing. The results of quantitative real-time PCR validation indicated that three ATP-binding cassette (ABC) transporters (ABE2, ABC15, and ABC15-2), four P450 (C76C2, CYOS, C78A5, and C81Q32), and two UDP-glucosyltransferase (UGT) (UGT13248 and UGT73C3), and one glutathione S-transferases (GST) (GST3) were the major candidates that contributed to metabolic nicosulfuron resistance in S. viridis. However, the specific role of these ten genes in metabolic resistance requires more research. Collectively, ALS gene mutations and enhanced metabolism may be responsible for the resistance of R376 to nicosulfuron.


Asunto(s)
Herbicidas , Setaria (Planta) , Setaria (Planta)/genética , Compuestos de Sulfonilurea/farmacología , Piridinas , Análisis de Secuencia de ARN , Resistencia a los Herbicidas/genética , Herbicidas/farmacología
4.
Pestic Biochem Physiol ; 188: 105256, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464361

RESUMEN

Amaranthus retroflexus L., a troublesome annual dicotyledonous weed species, is highly competitive with soybean (Glycine max L.). A single-dose herbicide-resistance screening assay identified an A. retroflexus population with suspected resistance to fomesafen. Whole-plant dose-response assays demonstrated that the resistant population (2492) was resistant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides (50.6-fold fomesafen resistance and > 8.1-fold lactofen resistance) compared to a susceptible (S) population. PPX2 gene sequence analysis showed an Arg128Gly amino acid substitution in the 2492 population. Moreover, pretreatment of malathion and the fomesafen metabolic assays through HPLC-MS demonstrated enhanced fomesafen metabolism in the 2492 population. Additionally, the 2492 population was 10.4-fold more resistant to the ALS-inhibiting herbicide imazethapyr and 16.8-fold more resistant to thifensulfuron-methyl than the S population. ALS gene sequence analysis showed an Ala205Val amino acid substitution in the 2492 population. This population of A. retroflexus has coexisting target-site resistance and non-target-site mechanisms for resistance to fomesafen. Multiple herbicide resistance may mean it is necessary to adjust weed management strategies to better control the resistant population.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Mutación , Herbicidas/farmacología , China , Malezas , Glycine max
5.
Plants (Basel) ; 11(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432773

RESUMEN

Silene conoidea L. is an annual troublesome broadleaf weed in winter wheat fields in China. In recent years, field applications of tribenuron-methyl have been ineffective in controlling S. conoidea in Hebei Province, China. The aim of this study was to determine the molecular basis of tribenuron-methyl resistance in S. conoidea. Whole-plant response assays revealed that the resistant population (R) exhibited a higher level of resistance (382.3-fold) to tribenuron-methyl. The R population also showed high cross-resistance to other acetolactate synthase (ALS) inhibitors, including imazethapyr, bispyribac-sodium and florasulam. However, the R population could be controlled by the field-recommended rates of bentazone, MCPA, fluroxypyr, carfentrazone-ethyl and bromoxynil. In vitro ALS activity assays indicated that the tribenuron-methyl I50 value for the R population was 18.5 times higher than those for the susceptible population (S). ALS gene sequencing revealed an amino acid mutation, Trp-574-Leu, in the R population. Pretreatment with the P450 inhibitor malathion indicated that the R population might have cytochrome P450-mediated metabolic resistance. These results suggest that the Trp-574-Leu mutation and P450-mediated enhanced metabolism coexist in S. conoidea to generate tribenuron-methyl resistance. This is the first time that target-site and non-target-site resistance to tribenuron-methyl has been reported in S. conoidea.

6.
Pestic Biochem Physiol ; 186: 105155, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973760

RESUMEN

Common lambsquarters (Chenopodium album L.) is a broadleaf weed that can severely damage soybean fields. Two C. album populations (1744 and 1731) suspected resistant to imazethapyr were investigated for resistance levels to imazethapyr, thifensulfuron-methyl, and fomesafen and their resistance mechanisms were investigated. Whole-plant dose-response assays revealed that, compared to the susceptible (S) population, the 1744 population was 16.5-fold resistant to imazethapyr, slightly resistant to thifensulfuron-methyl (resistance index [R/S], <3). The 1731 population was 18.8-fold resistant to imazethapyr, 2.9-fold resistant to thifensulfuron-methyl, and 5.1-fold resistant to fomesafen. In vitro acetolactate synthase (ALS) assays showed 17.1-fold and 19.3-fold resistance levels of 1744 and 1731 populations to imazethapyr respectively. ALS gene sequence analysis identified Ala122Thr amino acid substitution in the 1744 population and Ser653Thr amino acid substitution in the 1731 population. No mutations of the protoporphyrinogen oxidase (PPO) gene were detected. However, pre-treatment with malathion reversed fomesafen resistance, suggesting nontarget-site resistance mechanisms likely play a role in the 1731 population.


Asunto(s)
Acetolactato Sintasa , Chenopodium album , Herbicidas , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Chenopodium album/genética , Chenopodium album/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Protoporfirinógeno-Oxidasa
7.
Pestic Biochem Physiol ; 186: 105164, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973771

RESUMEN

Redroot amaranth (Amaranthus retroflexus L.) is a noxious weed that affects soybean production in China. Experiments were conducted to determine the molecular basis of resistance to bentazone. Whole-plant dose-response experiments showed that two populations (R1 and R2) exhibited resistance to bentazone with resistance indices of 9.01 and 6.85, respectively. Sequencing of the psbA gene revealed no amino acid substitution in the two populations. qRT-PCR analysis verified that psbA gene expression in R1 and R2 populations was increased significantly after treatment with bentazone, which was 3-fold and 5-fold higher than that in S1 and S2 populations, respectively. The P450 inhibitor malathion significantly reduced the level of resistance in the R1 and R2 populations when used prior to bentazone treatment. The R1 population exhibited multiple resistance to thifensulfuron-methyl and lactofen, caused by target site mutations (Asp-376-Glu in ALS, Arg-128-Gly in PPO2). In conclusion, increased gene expression of the psbA gene and enhanced herbicide metabolism seem to be the basis of resistance to bentazone in these A. retroflexus populations.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Benzotiadiazinas , Resistencia a los Herbicidas/genética , Herbicidas/farmacología
8.
Plants (Basel) ; 11(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807593

RESUMEN

In crop fields, resistance to acetolactate synthase (ALS)-inhibiting herbicides found in many troublesome weed species, including Bromus japonicus Thunb, is a worldwide problem. In particular, the development of herbicide resistance in B. japonicus is a severe threat to wheat production in China. The purpose of this research was to investigate the physiological and molecular basis of B. japonicus resistance to flucarbazone-sodium. Dose-response analysis demonstrated that, compared with the susceptible B. japonicus (S) population, the resistant (R) population exhibited a 120-fold increase in flucarbazone-sodium resistance. Nucleotide sequence alignment of the ALS gene indicated that the Pro-197-Ser mutation in ALS was associated with resistance to flucarbazone-sodium in the R population. The results of a malathion pretreatment study showed that B. japonicus might also have remarkable cytochrome P450 monooxygenase (P450)-mediated metabolic resistance. This is the first report of a Pro-197-Ser mutation and P450-mediated metabolism conferring resistance to flucarbazone-sodium in B. japonicus.

9.
Plants (Basel) ; 11(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807597

RESUMEN

Black grass (Alopecurus myosuroides Huds.) is a highly competitive weed in winter wheat fields of China. Due to repeated use of acetolactate synthase (ALS) inhibitors, many A. myosuroides populations have evolved resistance to pyroxsulam in some wheat fields. Research was conducted to determine the molecular basis of herbicide resistance in the AH93 A. myosuroides population. Whole-plant dose-response assay confirmed that the AH93 population was resistant to pyroxsulam with a resistance index of 4.2. Cross- and multiple-resistance assays indicated that the AH93 population was cross-resistant to mesosulfuron-methyl and multiple-resistant to pinoxaden. Sequencing of the ALS and ACCase gene revealed that there was no target-site mutation in ALS, but Trp-2027-Cys and Cys-2088-Arg amino acid mutations in ACCase in the AH93 population. A malathion pretreatment study indicated that the AH93 population might have cytochrome P450-mediated herbicide metabolic resistance. This is the first report of pyroxsulam resistance in a multiple-resistant A. myosuroides population in China, and the Cys-2088-Arg mutation is the first reported case of an ACCase mutant conferring herbicide resistance in A. myosuroides.

10.
Pestic Biochem Physiol ; 184: 105127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715065

RESUMEN

Two black-grass (Alopecurus myosuroides Huds.) populations (R2105 and R1027) that were suspected to be resistant to clodinafop-propargyl, an acetyl-CoAcarboxylase (ACCase) inhibitor, were found in winter wheat fields in China. Research was carried out to investigate whether resistance to clodinafop-propargyl was present and the molecular mechanism of herbicide resistance in these two populations. Dose-response assays confirmed high level resistance to clodinafop-propargyl in both R2105 and R1027 populations, with resistance indexes 25.1 and 22.1. ACCase gene sequence comparison revealed three amino acid mutations (Trp-1999-Leu, Ile-2041-Asn, or Asp-2078-Gly) in R2105 population and Ile-2041-Asn mutation in R1027 population. Sensitivity to other herbicides assays indicated that R2105 and R1027 populations were cross resistant to fenoxaprop-P-ethyl and multiple resistant to pyroxsulam and mesosulfuron-methyl. The ALS gene sequence analysis revealed that all resistant individuals in R2105 and R1027 populations had the Trp-574-Leu mutation. Applying malathion, significantly decreased the rate of metabolism of clodinafop-propargyl in both R2105 and R1027 populations. This is the first report of multiple resistance to ACCase- and ALS-inhibiting herbicides conferred by target-site mutations and enhanced metabolism in black-grass in China.


Asunto(s)
Herbicidas , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA