Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Kaohsiung J Med Sci ; 40(3): 231-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38180297

RESUMEN

Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/genética , Glucólisis/genética , Proliferación Celular/genética , Glucosa , MicroARNs/genética , Línea Celular Tumoral
2.
Gene ; 516(1): 93-100, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23266634

RESUMEN

Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, and duplication sequences of PKD1. Recently, targeted resequencing by pooling long-range polymerase chain reaction (LR-PCR) amplicons has been used in the identification of mutations in ADPKD. Despite its high sensitivity, specificity and accuracy, LR-PCR is still complicated. We performed whole-exome sequencing on two unrelated typical Chinese ADPKD probands and evaluated the effectiveness of this approach compared with Sanger sequencing. Meanwhile, we performed targeted gene and next-generation sequencing (targeted DNA-HiSeq) on 8 individuals (1 patient from one family, 5 patients and 2 normal individuals from another family). Both whole-exome sequencing and targeted DNA-HiSeq confirmed c.11364delC (p.H3788QfsX37) within the unduplicated region of PKD1 in one proband; in the other family, targeted DNA-HiSeq identified a small insertion, c.401_402insG (p.V134VfsX79), in PKD2. These methods do not overcome the screening complexity of homology. However, the true positives of variants confirmed by targeted gene and next-generation sequencing were 69.4%, 50% and 100% without a false positive in the whole coding region and the duplicated and unduplicated regions, which indicated that the screening accuracy of PKD1 and PKD2 can be largely improved by using a greater sequencing depth and elaborate design of the capture probe.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/genética , Análisis de Secuencia de ADN/métodos , Adulto , Secuencia de Aminoácidos , Pueblo Asiatico/genética , Exones , Pruebas Genéticas , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Reacción en Cadena de la Polimerasa , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA