Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 619(7970): 632-639, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344599

RESUMEN

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas , Antígenos de Histocompatibilidad Menor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Regulación hacia Arriba
2.
Oncogene ; 40(41): 6049-6056, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34471235

RESUMEN

Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its transcriptional activities and its function in prostate cancer metastasis.


Asunto(s)
Prolil Hidroxilasas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Movimiento Celular/fisiología , Humanos , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , Proteínas Señalizadoras YAP/antagonistas & inhibidores
3.
Nat Commun ; 11(1): 4766, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958778

RESUMEN

Germline telomere maintenance defects are associated with an increased incidence of inflammatory diseases in humans, yet whether and how telomere dysfunction causes inflammation are not known. Here, we show that telomere dysfunction drives pATM/c-ABL-mediated activation of the YAP1 transcription factor, up-regulating the major pro-inflammatory factor, pro-IL-18. The colonic microbiome stimulates cytosolic receptors activating caspase-1 which cleaves pro-IL-18 into mature IL-18, leading to recruitment of interferon (IFN)-γ-secreting T cells and intestinal inflammation. Correspondingly, patients with germline telomere maintenance defects exhibit DNA damage (γH2AX) signaling together with elevated YAP1 and IL-18 expression. In mice with telomere dysfunction, telomerase reactivation in the intestinal epithelium or pharmacological inhibition of ATM, YAP1, or caspase-1 as well as antibiotic treatment, dramatically reduces IL-18 and intestinal inflammation. Thus, telomere dysfunction-induced activation of the ATM-YAP1-pro-IL-18 pathway in epithelium is a key instigator of tissue inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Inflamación/patología , Telómero/patología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antibacterianos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Caspasa 1/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Niño , Colon/metabolismo , Colon/microbiología , Colon/patología , Enfermedades Gastrointestinales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-18/genética , Interleucina-18/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Mutantes , Fosforilación , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transducción de Señal , Telomerasa/genética , Telomerasa/metabolismo , Proteínas Señalizadoras YAP
5.
Cancer Discov ; 10(9): 1374-1387, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385075

RESUMEN

Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identified CHD1 as an essential gene in PTEN-deficient cancer cells. Here, we sought definitive in vivo genetic evidence for, and mechanistic understanding of, the essential role of CHD1 in PTEN-deficient prostate cancer. In Pten and Pten/Smad4 genetically engineered mouse models, prostate-specific deletion of Chd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identified IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. Given the prominent role of MDSCs in suppressing responsiveness to immune checkpoint inhibitors (ICI), our genetic and tumor biological findings support combined testing of anti-IL6 and ICI therapies, specifically in PTEN-deficient prostate cancer. SIGNIFICANCE: We demonstrate a critical role of CHD1 in MDSC recruitment and discover CHD1/IL6 as a major regulator of the immunosuppressive TME of PTEN-deficient prostate cancer. Pharmacologic inhibition of IL6 in combination with immune checkpoint blockade elicits robust antitumor responses in prostate cancer.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Escape del Tumor/genética , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Masculino , Ratones Transgénicos , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Proteína Smad4/genética , Microambiente Tumoral/genética
6.
Cancer Discov ; 10(7): 1058-1077, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32341020

RESUMEN

Oncogenic KRAS (KRAS*) is a key tumor maintenance gene in pancreatic ductal adenocarcinoma (PDAC), motivating pharmacologic targeting of KRAS* and its effectors. Here, we explored mechanisms involving the tumor microenvironment (TME) as a potential basis for resistance to targeting KRAS*. Using the inducible Kras G12D;Trp53 -/- PDAC mouse model, gain-of-function screens of epigenetic regulators identified HDAC5 as the top hit enabling KRAS* independent tumor growth. HDAC5-driven escaper tumors showed a prominent neutrophil-to-macrophage switch relative to KRAS*-driven tumors. Mechanistically, HDAC5 represses Socs3, a negative regulator of chemokine CCL2, resulting in increased CCL2, which recruits CCR2+ macrophages. Correspondingly, enforced Ccl2 promotes macrophage recruitment into the TME and enables tumor recurrence following KRAS* extinction. These tumor-associated macrophages in turn provide cancer cells with trophic support including TGFß to enable KRAS* bypass in a SMAD4-dependent manner. Our work uncovers a KRAS* resistance mechanism involving immune cell remodeling of the PDAC TME. SIGNIFICANCE: Although KRAS* is required for PDAC tumor maintenance, tumors can recur following KRAS* extinction. The capacity of PDAC cancer cells to alter the TME myeloid cell composition to support KRAS*-independent tumor growth illuminates novel therapeutic targets that may enhance the effectiveness of therapies targeting KRAS* and its pathway components.See related commentary by Carr and Fernandez-Zapico, p. 910.This article is highlighted in the In This Issue feature, p. 890.


Asunto(s)
Oncogenes/fisiología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Cancer Discov ; 10(3): 371-381, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919052

RESUMEN

Glioblastoma (GBM) is a lethal brain tumor containing a subpopulation of glioma stem cells (GSC). Pan-cancer analyses have revealed that stemness of cancer cells correlates positively with immunosuppressive pathways in many solid tumors, including GBM, prompting us to conduct a gain-of-function screen of epigenetic regulators that may influence GSC self-renewal and tumor immunity. The circadian regulator CLOCK emerged as a top hit in enhancing stem-cell self-renewal, which was amplified in about 5% of human GBM cases. CLOCK and its heterodimeric partner BMAL1 enhanced GSC self-renewal and triggered protumor immunity via transcriptional upregulation of OLFML3, a novel chemokine recruiting immune-suppressive microglia into the tumor microenvironment. In GBM models, CLOCK or OLFML3 depletion reduced intratumoral microglia density and extended overall survival. We conclude that the CLOCK-BMAL1 complex contributes to key GBM hallmarks of GSC maintenance and immunosuppression and, together with its downstream target OLFML3, represents new therapeutic targets for this disease. SIGNIFICANCE: Circadian regulator CLOCK drives GSC self-renewal and metabolism and promotes microglia infiltration through direct regulation of a novel microglia-attracting chemokine, OLFML3. CLOCK and/or OLFML3 may represent novel therapeutic targets for GBM.This article is highlighted in the In This Issue feature, p. 327.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Glioblastoma/genética , Glicoproteínas/genética , Animales , Línea Celular Tumoral , Autorrenovación de las Células/genética , Autorrenovación de las Células/inmunología , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/terapia , Xenoinjertos , Humanos , Inmunidad Celular/inmunología , Ratones , Microglía/inmunología , Microglía/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
8.
Cancer Cell ; 35(6): 868-884.e6, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185211

RESUMEN

Heterotypic interactions across diverse cell types can enable tumor progression and hold the potential to expand therapeutic interventions. Here, combined profiling and functional studies of glioma cells in glioblastoma multiforme (GBM) models establish that PTEN deficiency activates YAP1, which directly upregulates lysyl oxidase (LOX) expression. Mechanistically, secreted LOX functions as a potent macrophage chemoattractant via activation of the ß1 integrin-PYK2 pathway in macrophages. These infiltrating macrophages secrete SPP1, which sustains glioma cell survival and stimulates angiogenesis. In PTEN-null GBM models, LOX inhibition markedly suppresses macrophage infiltration and tumor progression. Correspondingly, YAP1-LOX and ß1 integrin-SPP1 signaling correlates positively with higher macrophage density and lower overall survival in GBM patients. This symbiotic glioma-macrophage interplay provides therapeutic targets specifically for PTEN-deficient GBM.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Glioma/genética , Macrófagos/enzimología , Fosfohidrolasa PTEN/genética , Comunicación Paracrina , Proteína-Lisina 6-Oxidasa/metabolismo , Mutaciones Letales Sintéticas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor/deficiencia , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Movimiento Celular , Proliferación Celular , Inhibidores Enzimáticos/farmacología , Femenino , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/enzimología , Glioma/patología , Células HEK293 , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones SCID , Osteopontina/genética , Osteopontina/metabolismo , Fosfohidrolasa PTEN/deficiencia , Comunicación Paracrina/efectos de los fármacos , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Proteína-Lisina 6-Oxidasa/genética , Células RAW 264.7 , Transducción de Señal , Células THP-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
9.
Cancer Cell ; 35(4): 559-572.e7, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30905761

RESUMEN

The biological functions and mechanisms of oncogenic KRASG12D (KRAS∗) in resistance to immune checkpoint blockade (ICB) therapy are not fully understood. We demonstrate that KRAS∗ represses the expression of interferon regulatory factor 2 (IRF2), which in turn directly represses CXCL3 expression. KRAS∗-mediated repression of IRF2 results in high expression of CXCL3, which binds to CXCR2 on myeloid-derived suppressor cells and promotes their migration to the tumor microenvironment. Anti-PD-1 resistance of KRAS∗-expressing tumors can be overcome by enforced IRF2 expression or by inhibition of CXCR2. Colorectal cancer (CRC) showing higher IRF2 expression exhibited increased responsiveness to anti-PD-1 therapy. The KRAS∗-IRF2-CXCL3-CXCR2 axis provides a framework for patient selection and combination therapies to enhance the effectiveness of ICB therapy in CRC.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Factor 2 Regulador del Interferón/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Escape del Tumor , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Adulto , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular , Quimiocinas CXC/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 2 Regulador del Interferón/genética , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Interleucina-8B/metabolismo , Transducción de Señal , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
10.
Nature ; 542(7642): 484-488, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28166537

RESUMEN

Synthetic lethality and collateral lethality are two well-validated conceptual strategies for identifying therapeutic targets in cancers with tumour-suppressor gene deletions. Here, we explore an approach to identify potential synthetic-lethal interactions by screening mutually exclusive deletion patterns in cancer genomes. We sought to identify 'synthetic-essential' genes: those that are occasionally deleted in some cancers but are almost always retained in the context of a specific tumour-suppressor deficiency. We also posited that such synthetic-essential genes would be therapeutic targets in cancers that harbour specific tumour-suppressor deficiencies. In addition to known synthetic-lethal interactions, this approach uncovered the chromatin helicase DNA-binding factor CHD1 as a putative synthetic-essential gene in PTEN-deficient cancers. In PTEN-deficient prostate and breast cancers, CHD1 depletion profoundly and specifically suppressed cell proliferation, cell survival and tumorigenic potential. Mechanistically, functional PTEN stimulates the GSK3ß-mediated phosphorylation of CHD1 degron domains, which promotes CHD1 degradation via the ß-TrCP-mediated ubiquitination-proteasome pathway. Conversely, PTEN deficiency results in stabilization of CHD1, which in turn engages the trimethyl lysine-4 histone H3 modification to activate transcription of the pro-tumorigenic TNF-NF-κB gene network. This study identifies a novel PTEN pathway in cancer and provides a framework for the discovery of 'trackable' targets in cancers that harbour specific tumour-suppressor deficiencies.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Genes Esenciales/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/química , ADN Helicasas/deficiencia , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilación , Terapia Molecular Dirigida , FN-kappa B/metabolismo , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitinación , Proteínas con Repetición de beta-Transducina/metabolismo
11.
Mol Cell Biol ; 26(20): 7667-81, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16908528

RESUMEN

The retinoblastoma (RB) and p16ink4a tumor suppressors are believed to function in a linear pathway that is functionally inactivated in a large fraction of human cancers. Recent studies have shown that RB plays a critical role in regulating S phase as a means for suppressing aberrant proliferation and controlling genome stability. Here, we demonstrate a novel role for p16ink4a in replication control that is distinct from that of RB. Specifically, p16ink4a disrupts prereplication complex assembly by inhibiting mini-chromosome maintenance (MCM) protein loading in G1, while RB was found to disrupt replication in S phase through attenuation of PCNA function. This influence of p16ink4a on the prereplication complex was dependent on the presence of RB and the downregulation of cyclin-dependent kinase (CDK) activity. Strikingly, the inhibition of CDK2 activity was not sufficient to prevent the loading of MCM proteins onto chromatin, which supports a model wherein the composite action of multiple G1 CDK complexes regulates prereplication complex assembly. Additionally, p16ink4a attenuated the levels of the assembly factors Cdt1 and Cdc6. The enforced expression of these two licensing factors was sufficient to restore the assembly of the prereplication complex yet failed to promote S-phase progression due to the continued absence of PCNA function. Combined, these data reveal that RB and p16ink4a function through distinct pathways to inhibit the replication machinery and provide evidence that stepwise regulation of CDK activity interfaces with the replication machinery at two discrete execution points.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN/genética , Retinoblastoma/genética , Retinoblastoma/metabolismo , Fase S , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cromosomas/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Expresión Génica , Humanos , Proteínas Nucleares/genética , Unión Proteica , Transducción de Señal
12.
J Biol Chem ; 278(32): 30339-47, 2003 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-12746453

RESUMEN

Cyclin D1 is a proto-oncogene that functions by inactivation of the retinoblastoma tumor suppressor protein, RB. A common polymorphism in the cyclin D1 gene is associated with the production of an alternate transcript of cyclin D1, termed cyclin D1b. Both the polymorphism and the variant transcript are associated with increased risk for multiple cancers and the severity of a given cancer; however, the underlying activities of cyclin D1b have not been elucidated relative to the canonical cyclin D1a. Because cyclin D1b does not possess the threonine 286 phosphorylation site required for nuclear export and regulated degradation, it has been hypothesized to encode a stable nuclear protein that would constitutively inactivate the RB pathway. Surprisingly, we find that cyclin D1b protein does not inappropriately accumulate in cells and exhibits stability comparable to cyclin D1a. As expected, the cyclin D1b protein was constitutively localized in the nucleus, whereas cyclin D1a was exported to the cytoplasm in S-phase. Despite enhanced nuclear localization, we find that cyclin D1b is a poor catalyst of RB phosphorylation/inactivation. However, cyclin D1b potently induced cellular transformation in contrast to cyclin D1a. In summary, we demonstrate that cyclin D1b specifically disrupts contact inhibition in a manner distinct from cyclin D1a. These data reveal novel roles for d-type cyclins in tumorigenesis.


Asunto(s)
Empalme Alternativo , Ciclina D1/biosíntesis , Ciclina D1/genética , Proteínas Proto-Oncogénicas , Proteína de Retinoblastoma/metabolismo , Células 3T3 , Alelos , Animales , Sitios de Unión , Ciclo Celular , Núcleo Celular/metabolismo , Transformación Celular Neoplásica , Ciclina D1/química , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Citoplasma/metabolismo , ADN/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes , Humanos , Immunoblotting , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente , Modelos Genéticos , Neoplasias/genética , Fosforilación , Plásmidos/metabolismo , Polimorfismo Genético , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proto-Oncogenes Mas , Treonina/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección , Células Tumorales Cultivadas
13.
J Biol Chem ; 277(10): 8372-81, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11726663

RESUMEN

DNA-damage evokes cell cycle checkpoints, which function to maintain genomic integrity. The retinoblastoma tumor suppressor (RB) and mismatch repair complexes are known to contribute to the appropriate cellular response to specific types of DNA damage. However, the signaling pathways through which these proteins impact the cell cycle machinery have not been explicitly determined. RB-deficient murine embryo fibroblasts continued a high degree of DNA replication following the induction of cisplatin damage, but were inhibited for G(2)/M progression. This damage led to RB dephosphorylation/activation and subsequent RB-dependent attenuation of cyclin A and CDK2 activity. In both Rb+/+ and Rb -/- cells, cyclin D1 expression was attenuated following DNA damage. As cyclin D1 is a critical determinant of RB phosphorylation and cell cycle progression, we probed the pathway through which cyclin D1 degradation occurs in response to DNA damage. We found that attenuation of endogenous cyclin D1 is dependent on multiple mismatch repair proteins. We demonstrate that the mismatch repair-dependent attenuation of endogenous cyclin D1 is critical for attenuation of CDK2 activity and induction of cell cycle checkpoints. Together, these studies couple the activity of the retinoblastoma and mismatch repair tumor suppressor pathways through the degradation of cyclin D1 and dual attenuation of CDK2 activity.


Asunto(s)
Quinasas CDC2-CDC28 , Ciclina D1/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN , Reparación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Animales , Disparidad de Par Base , Ciclo Celular , Línea Celular , Cisplatino/farmacología , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina , Activación Enzimática , Fase G2 , Immunoblotting , Ratones , Microscopía Fluorescente , Mitosis , Fosforilación , Pruebas de Precipitina , Unión Proteica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...