Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2435, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499573

RESUMEN

The potential of immune checkpoint inhibitors (ICI) may be limited in situations where immune cell fitness is impaired. Here, we show that the efficacy of cancer immunotherapies is compromised by the accumulation of senescent cells in mice and in the context of therapy-induced senescence (TIS). Resistance to immunotherapy is associated with a decrease in the accumulation and activation of CD8 T cells within tumors. Elimination of senescent cells restores immune homeostasis within the tumor micro-environment (TME) and increases mice survival in response to immunotherapy. Using single-cell transcriptomic analysis, we observe that the injection of ABT263 (Navitoclax) reverses the exacerbated immunosuppressive profile of myeloid cells in the TME. Elimination of these myeloid cells also restores CD8 T cell proliferation in vitro and abrogates immunotherapy resistance in vivo. Overall, our study suggests that the use of senolytic drugs before ICI may constitute a pharmacological approach to improve the effectiveness of cancer immunotherapies.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Ratones , Inmunoterapia , Neoplasias/patología , Senescencia Celular
2.
Bone Marrow Transplant ; 57(2): 252-260, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34845367

RESUMEN

Despite novel drugs and autologous HCT, MM remains incurable, with short survival in patients with poor biological characteristics. Allo HCT may be curative in some patients but is hampered by high rates of toxicity and relapse. We hypothesized that bortezomib (BTZ), with its anti-myeloma and immunologic properties, could improve PFS and cGVHD after allo HCT in newly diagnosed MM patients. In this prospective phase II study, we included 39 young (≤50 years) and high-risk patients who received a tandem auto-allo HCT followed by BTZ. Patients had prospective minimal residual disease (MRD) evaluations using Next-Generation Flow cytometry prior to allo HCT, prior BTZ and every 3 months for 2 years. With a median follow-up of 48 months, we report PFS and OS at 5 years of 41% and 80%, with a non-relapse mortality of 12%. Incidences of grade II-IV aGVHD at 12 months and moderate/severe cGVHD at 2 years were 26% and 57%. In a multivariate analysis model including cytogenetics, ISS and MRD status, MRD positivity prior to allo HCT (HR 3.75, p = 0.037), prior BTZ (HR 11.3, p = 0.018) and 3 months post-BTZ initiation (HR 9.7, p = 0.001) was highly predictive of progression. Peritransplant MRD assessment thus strongly predicts disease progression.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Aloinjertos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/terapia , Recurrencia Local de Neoplasia , Neoplasia Residual/diagnóstico , Estudios Prospectivos , Resultado del Tratamiento
3.
Clin Transplant ; 34(12): e14099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32981146

RESUMEN

BACKGROUND: Long-term survival in patients progressing after tandem autologous-allogeneic stem cell transplant (SCT) has been reported, suggesting a persistent graft-vs-myeloma (GvM) effect even after post-transplant progression. METHODS: In order to confirm this observation, we updated the results of our previously published cohort of 92 newly diagnosed myeloma patients who received tandem transplant and compared them with 81 contemporary patients who received autologous transplant only. RESULTS: With a median follow-up of 13.1 and 10.2 years, respectively, median overall survival (OS) in the tandem group has not been reached, compared with 6.1 years after auto-SCT (P ≤ .001). Disease progression occurred less frequently after tandem transplant, with an estimated 10-year cumulative incidence of 49% vs 76% (P ≤ .001). Cumulative incidence of extensive chronic graft-vs-host disease (cGVHD) was high at 83%, with modest benefits on OS (60% vs 49%, P = .550) but sharp improvement of progression-free survival (PFS; 55% vs 10%, P = .002) at 10 years associated with development of cGVHD. After first progression, median OS was 5.8 years in tandem and 5.2 years in the auto-group (P = .062); median PFS was also similar. CONCLUSION: Despite confirmation of better outcomes after upfront tandem transplant, our data do not support persistence of a strong, clinically significant graft-vs-myeloma effect after first progression, emphasizing the need to better characterize the GvM effect.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Autoinjertos , Supervivencia sin Enfermedad , Humanos , Mieloma Múltiple/terapia , Recurrencia Local de Neoplasia , Trasplante de Células Madre , Trasplante Autólogo , Trasplante Homólogo , Resultado del Tratamiento
4.
Lancet Haematol ; 7(2): e134-e145, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31704264

RESUMEN

BACKGROUND: Benefits of cord blood transplantation include low rates of relapse and chronic graft-versus-host disease (GVHD). However, the use of cord blood is rapidly declining because of the high incidence of infections, severe acute GVHD, and transplant-related mortality. UM171, a haematopoietic stem cell self-renewal agonist, has been shown to expand cord blood stem cells and enhance multilineage blood cell reconstitution in mice. We aimed to investigate the safety and feasibility of single UM171-expanded cord blood transplantation in patients with haematological malignancies who do not have a suitable HLA-matched donor. METHODS: This single-arm, open-label, phase 1-2 safety and feasibility study was done at two hospitals in Canada. The study had two parts. In part 1, patients received two cord blood units (one expanded with UM171 and one unmanipulated cord blood) until UM171-expanded cord blood demonstrated engraftment. Once engraftment was documented we initiated part 2, reported here, in which patients received a single UM171-expanded cord blood unit with a dose de-escalation design to determine the minimal cord blood unit cell dose that achieved prompt engraftment. Eligible patients were aged 3-64 years, weighed 12 kg or more, had a haematological malignancy with an indication for allogeneic hematopoietic stem cell transplant and did not have a suitable HLA-matched donor, and a had a Karnofsky performance status score of 70% or more. Five clinical sites were planned to participate in the study; however, only two study sites opened, both of which only treated adult patients, thus no paediatric patients (aged <18 years) were recruited. Patients aged younger than 50 years without comorbidities received a myeloablative conditioning regimen (cyclophosphamide 120 mg/kg, fludarabine 75 mg/m2, and 12 Gy total body irradiation) and patients aged older than 50 years and those with comorbidities received a less myeloablative conditioning regimen (cyclophosphamide 50 mg/kg, thiotepa 10 mg/kg, fludarabine 150 mg/m2, and 4 Gy total body irradiation). Patients were infused with the 7-day UM171-expanded CD34-positive cells and the lymphocyte-containing CD34-negative fraction. The primary endpoints were feasibility of UM171 expansion, safety of the transplant, kinetics of hematopoietic reconstitution (time to neutrophil and platelet engraftment) of UM171-expanded cord blood, and minimal pre-expansion cord blood unit cell dose that achieved prompt engraftment. We analysed feasibility in all enrolled patients and all other primary outcomes were analysed per protocol, in all patients who received single UM171-expanded cord blood transplantation. This trial has been completed and was registered with ClinicalTrials.gov, NCT02668315. FINDINGS: Between Feb 17, 2016, and Nov 11, 2018, we enrolled 27 patients, four of whom received two cord blood units for safety purposes in part 1 of the study. 23 patients were subsequently enrolled in part 2 to receive a single UM171-expanded cord blood transplant and 22 patients received a single UM171-expanded cord blood transplantation. At data cutoff (Dec 31, 2018), median follow-up was 18 months (IQR 12-22). The minimal cord blood unit cell dose at thaw that achieved prompt engraftment as a single cord transplant after UM171 expansion was 0·52 × 105 CD34-positive cells. We successfully expanded 26 (96%) of 27 cord blood units with UM171. Among the 22 patients who received single UM171-expanded cord blood transplantation, median time to engraftment of 100 neutrophils per µL was 9·5 days (IQR 8-12), median time to engraftment of 500 neutrophils per µL was 18 days (12·5-20·0), and no graft failure occurred. Median time to platelet recovery was 42 days (IQR 35-47). The most common non-haematological adverse events were grade 3 febrile neutropenia (16 [73%] of 22 patients) and bacteraemia (nine [41%]). No unexpected adverse events were observed. One (5%) of 22 patients died due to treatment-related diffuse alveolar haemorrhage. INTERPRETATION: Our preliminary findings suggest that UM171 cord blood stem cell expansion is feasible, safe, and allows for the use of small single cords without compromising engraftment. UM171-expanded cord blood might have the potential to overcome the disadvantages of other cord blood transplants while maintaining the benefits of low risk of chronic GVHD and relapse, and warrants further investigation in randomised trials. FUNDING: Canadian Institutes of Health Research, Canadian Cancer Society and Stem Cell Network.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/efectos de los fármacos , Indoles/farmacología , Pirimidinas/farmacología , Adolescente , Adulto , Autorrenovación de las Células/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Células Cultivadas/trasplante , Trasplante de Células Madre de Sangre del Cordón Umbilical/efectos adversos , Supervivencia sin Enfermedad , Estudios de Factibilidad , Neutropenia Febril/etiología , Femenino , Supervivencia de Injerto , Enfermedad Injerto contra Huésped/etiología , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/citología , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Resultado del Tratamiento , Adulto Joven
5.
Cell Rep ; 15(3): 666-679, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27068461

RESUMEN

Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region and binding site levels, IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3' UTR-enriched targets. RNA Bind-N-seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and increase in cell death. For cell adhesion, we find IMP1 maintains levels of integrin mRNA specifically regulating RNA stability of ITGB5 in hPSCs. Additionally, we show that IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Inmunoprecipitación/métodos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Adhesión Celular , Supervivencia Celular , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Integrinas/metabolismo , Motivos de Nucleótidos/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Cell Rep ; 7(3): 859-70, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24746823

RESUMEN

Polycomb group (PcG) proteins establish and maintain genetic programs that regulate cell-fate decisions. Drosophila multi sex combs (mxc) was categorized as a PcG gene based on a classical Polycomb phenotype and genetic interactions; however, a mechanistic connection between Polycomb and Mxc has not been elucidated. Hypomorphic alleles of mxc are characterized by male and female sterility and ectopic sex combs. Mxc is an important regulator of histone synthesis, and we find that increased levels of the core histone H3 in mxc mutants result in replicative stress and a persistent DNA damage response (DDR). Germline loss, ectopic sex combs and the DDR are suppressed by reducing H3 in mxc mutants. Conversely, mxc phenotypes are enhanced when the DDR is abrogated. Importantly, replicative stress induced by hydroxyurea treatment recapitulated mxc germline phenotypes. These data reveal how persistent replicative stress affects gene expression, tissue homeostasis, and maintenance of cellular identity in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Reparación del ADN , Replicación del ADN/efectos de los fármacos , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Histonas/genética , Histonas/metabolismo , Hidroxiurea/farmacología , Masculino , Fenotipo , Fosforilación , Proteínas del Grupo Polycomb/antagonistas & inhibidores , Proteínas del Grupo Polycomb/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Testículo/citología , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética
7.
Nat Med ; 16(10): 1152-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20852621

RESUMEN

During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluconeogenesis. Elevations in circulating glucagon and epinephrine, two hormones that activate hepatic gluconeogenesis, trigger the cAMP-mediated phosphorylation of cAMP response element-binding protein (Creb) and dephosphorylation of the Creb-regulated transcription coactivator-2 (Crtc2)--two key transcriptional regulators of this process. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment. Circadian control of gene expression is achieved by two transcriptional activators, Clock and Bmal1, which stimulate cryptochrome (Cry1 and Cry2) and Period (Per1, Per2 and Per3) repressors that feed back on Clock-Bmal1 activity. Here we show that Creb activity during fasting is modulated by Cry1 and Cry2, which are rhythmically expressed in the liver. Cry1 expression was elevated during the night-day transition, when it reduced fasting gluconeogenic gene expression by blocking glucagon-mediated increases in intracellular cAMP concentrations and in the protein kinase A-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry1 inhibited accumulation of cAMP in response to G protein-coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry proteins seemed to modulate GPCR activity directly through interaction with G(s)α. As hepatic overexpression of Cry1 lowered blood glucose concentrations and improved insulin sensitivity in insulin-resistant db/db mice, our results suggest that compounds that enhance cryptochrome activity may provide therapeutic benefit to individuals with type 2 diabetes.


Asunto(s)
Ritmo Circadiano/fisiología , Criptocromos/fisiología , AMP Cíclico/fisiología , Gluconeogénesis , Hígado/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/fisiología
8.
Cancer Res ; 67(12): 5699-707, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17575136

RESUMEN

We previously reported the identification of the Kis2 common retrovirus integration site, located on mouse chromosome X, in radiation leukemia virus-induced T-cell leukemias. Tumors with a provirus at the Kis2 locus overexpressed a novel noncoding RNA (ncRNA) with a complex splicing pattern and no polyA tail. Database upgrade revealed the presence of a microRNA (miRNA) cluster, miR-106-363, just downstream of the Kis2 ncRNAs. We found that Kis2 ncRNAs are the pri-miRNA of miR-106-363, and we present evidence that Kis2 ncRNA overexpression in mouse tumors results in miR-106a, miR-19b-2, miR-92-2, and miR-20b accumulation. We show the oncogenic potential of those miRNAs in anchorage independence assay and confirm pri-miR-106-363 overexpression in 46% of human T-cell leukemias tested. This overexpression contributes in rising miR-92 and miR-19 levels, as this is the case for miR-17-92 cluster overexpression. Furthermore, we identified myosin regulatory light chain-interacting protein, retinoblastoma-binding protein 1-like, and possibly homeodomain-interacting protein kinase 3 as target genes of this miRNA cluster, which establishes a link between these genes and T-cell leukemia for the first time.


Asunto(s)
Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Leucemia de Células T/genética , MicroARNs/genética , Oncogenes/genética , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucemia de Células T/virología , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/genética , ARN no Traducido , Virus de la Leucemia Inducida por Radiación , Proteína p107 Similar a la del Retinoblastoma/genética , Infecciones por Retroviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Tumorales por Virus/genética , Ubiquitina-Proteína Ligasas/genética
9.
J Virol ; 79(17): 11443-56, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16103195

RESUMEN

Retroviral tagging has been used extensively and successfully to identify genes implicated in cancer pathways. In order to find oncogenes implicated in T-cell leukemia, we used the highly leukemogenic radiation leukemia retrovirus VL3 (RadLV/VL3). We applied the inverted PCR technique to isolate and analyze sequences flanking proviral integrations in RadLV/VL3-induced T lymphomas. We found retroviral integrations in c-myc and Pim1 as already reported but we also identified for the first time Notch1 as a RadLV common integration site. More interestingly, we found a new RadLV common integration site that is situated on mouse chromosome X (XA4 region, bp 45091000). This site has also been reported as an SL3-3 and Moloney murine leukemia virus integration site, which strengthens its implication in murine leukemia virus-induced T lymphomas. This locus, named Kis2 (Kaplan Integration Site 2), was found rearranged in 11% of the tumors analyzed. In this article, we report not only the alteration of the Kis2 gene located nearby in response to RadLV integration but also the induction of the expression of Phf6, situated about 250 kbp from the integration site. The Kis2 gene encodes five different alternatively spliced noncoding RNAs and the Phf6 gene codes for a 365-amino-acid protein which contains two plant homology domain fingers, recently implicated in the Börjeson-Forssman-Lehmann syndrome in humans. With the recent release of the mouse genome sequence, high-throughput retroviral tagging emerges as a powerful tool in the quest for oncogenes. It also allows the analysis of large DNA regions surrounding the integration locus.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , ARN no Traducido/metabolismo , ARN Viral/metabolismo , Virus de la Leucemia Inducida por Radiación/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Leucemia Experimental/virología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Células 3T3 NIH , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Viral/genética , Receptor Notch1 , Receptores de Superficie Celular/genética , Infecciones por Retroviridae/virología , Alineación de Secuencia , Factores de Transcripción/genética , Infecciones Tumorales por Virus/virología , Integración Viral , Cromosoma X/genética , Región del Complejo T del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA