RESUMEN
INTRODUCTION: The human salivary metabolome is a rich source of information for metabolomics studies. Among other influences, individual differences in sleep-wake history and time of day may affect the metabolome. OBJECTIVES: We aimed to characterize the influence of a single night of sleep deprivation compared to sufficient sleep on the metabolites present in oral fluid and to assess the implications of sampling time points for the design of metabolomics studies. METHODS: Oral fluid specimens of 13 healthy young males were obtained in Salivette® devices at regular intervals in both a control condition (repeated 8-hour sleep) and a sleep deprivation condition (total sleep deprivation of 8 h, recovery sleep of 8 h) and their metabolic contents compared in a semi-targeted metabolomics approach. RESULTS: Analysis of variance results showed factor 'time' (i.e., sampling time point) representing the major influencer (median 9.24%, range 3.02-42.91%), surpassing the intervention of sleep deprivation (median 1.81%, range 0.19-12.46%). In addition, we found about 10% of all metabolic features to have significantly changed in at least one time point after a night of sleep deprivation when compared to 8 h of sleep. CONCLUSION: The majority of significant alterations in metabolites' abundances were found when sampled in the morning hours, which can lead to subsequent misinterpretations of experimental effects in metabolomics studies. Beyond applying a within-subject design with identical sample collection times, we highly recommend monitoring participants' sleep-wake schedules prior to and during experiments, even if the study focus is not sleep-related (e.g., via actigraphy).
Asunto(s)
Metabolómica , Saliva , Sueño , Humanos , Masculino , Metabolómica/métodos , Saliva/metabolismo , Saliva/química , Sueño/fisiología , Adulto Joven , Adulto , Privación de Sueño/metabolismo , Metaboloma/fisiología , Factores de TiempoRESUMEN
Evidence has shown that both sleep loss and daily caffeine intake can induce changes in grey matter (GM). Caffeine is frequently used to combat sleepiness and impaired performance caused by insufficient sleep. It is unclear (1) whether daily use of caffeine could prevent or exacerbate the GM alterations induced by 5-day sleep restriction (i.e. chronic sleep restriction, CSR), and (2) whether the potential impact on GM plasticity depends on individual differences in the availability of adenosine receptors, which are involved in mediating effects of caffeine on sleep and waking function. Thirty-six healthy adults participated in this double-blind, randomized, controlled study (age = 28.9 ± 5.2 y/; F:M = 15:21; habitual level of caffeine intake < 450 mg; 29 homozygous C/C allele carriers of rs5751876 of ADORA2A, an A2A adenosine receptor gene variant). Each participant underwent a 9-day laboratory visit consisting of one adaptation day, 2 baseline days (BL), 5-day sleep restriction (5 h time-in-bed), and a recovery day (REC) after an 8-h sleep opportunity. Nineteen participants received 300 mg caffeine in coffee through the 5 days of CSR (CAFF group), while 17 matched participants received decaffeinated coffee (DECAF group). We examined GM changes on the 2nd BL Day, 5th CSR Day, and REC Day using magnetic resonance imaging and voxel-based morphometry. Moreover, we used positron emission tomography with [18F]-CPFPX to quantify the baseline availability of A1 adenosine receptors (A1R) and its relation to the GM plasticity. The results from the voxel-wise multimodal whole-brain analysis on the Jacobian-modulated T1-weighted images controlled for variances of cerebral blood flow indicated a significant interaction effect between caffeine and CSR in four brain regions: (a) right temporal-occipital region, (b) right dorsomedial prefrontal cortex (DmPFC), (c) left dorsolateral prefrontal cortex (DLPFC), and (d) right thalamus. The post-hoc analyses on the signal intensity of these GM clusters indicated that, compared to BL, GM on the CSR day was increased in the DECAF group in all clusters but decreased in the thalamus, DmPFC, and DLPFC in the CAFF group. Furthermore, lower baseline subcortical A1R availability predicted a larger GM reduction in the CAFF group after CSR of all brain regions except for the thalamus. In conclusion, our data suggest an adaptive GM upregulation after 5-day CSR, while concomitant use of caffeine instead leads to a GM reduction. The lack of consistent association with individual A1R availability may suggest that CSR and caffeine affect thalamic GM plasticity predominantly by a different mechanism. Future studies on the role of adenosine A2A receptors in CSR-induced GM plasticity are warranted.
Asunto(s)
Cafeína , Sustancia Gris , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Receptor de Adenosina A1 , Privación de Sueño , Humanos , Cafeína/administración & dosificación , Cafeína/farmacología , Masculino , Adulto , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Sustancia Gris/efectos de los fármacos , Sustancia Gris/patología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/genética , Tomografía de Emisión de Positrones/métodos , Femenino , Imagen por Resonancia Magnética/métodos , Método Doble Ciego , Privación de Sueño/metabolismo , Privación de Sueño/diagnóstico por imagen , Adulto Joven , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genéticaRESUMEN
Acute caffeine intake affects brain and cardiovascular physiology, yet the concentration-effect relationships on the electroencephalogram and cardiac autonomic activity during sleep are poorly understood. To tackle this question, we simultaneously quantified the plasma caffeine concentration with ultra-high-performance liquid chromatography, as well as the electroencephalogram, heart rate and high-frequency (0.15-0.4 Hz) spectral power in heart rate variability, representing parasympathetic activity, with standard polysomnography during undisturbed human sleep. Twenty-one healthy young men in randomized, double-blind, crossover fashion, ingested 160 mg caffeine or placebo in a delayed, pulsatile-release caffeine formula at their habitual bedtime, and initiated a 4-hr sleep opportunity 4.5 hr later. The mean caffeine levels during sleep exhibited high individual variability between 0.2 and 18.4 µmolâ L-1. Across the first two non-rapid-eye-movement (NREM)-rapid-eye-movement sleep cycles, electroencephalogram delta (0.75-2.5 Hz) activity and heart rate were reliably modulated by waking and sleep states. Caffeine dose-dependently reduced delta activity and heart rate, and increased high-frequency heart rate variability in NREM sleep when compared with placebo. The average reduction in heart rate equalled 3.24 ± 0.77 beats per minute. Non-linear statistical models suggest that caffeine levels above ~7.4 µmolâ L-1 decreased electroencephalogram delta activity, whereas concentrations above ~4.3 µmolâ L-1 and ~ 4.9 µmolâ L-1, respectively, reduced heart rate and increased high-frequency heart rate variability. These findings provide quantitative concentration-effect relationships of caffeine, electroencephalogram delta power and cardiac autonomic activity, and suggest increased parasympathetic activity during sleep after intake of caffeine.
Asunto(s)
Sistema Nervioso Autónomo , Cafeína , Estudios Cruzados , Electroencefalografía , Frecuencia Cardíaca , Polisomnografía , Humanos , Cafeína/farmacología , Cafeína/sangre , Cafeína/administración & dosificación , Masculino , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Método Doble Ciego , Adulto , Adulto Joven , Polisomnografía/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/sangre , Estimulantes del Sistema Nervioso Central/administración & dosificación , Sueño/efectos de los fármacos , Sueño/fisiología , Relación Dosis-Respuesta a Droga , Ritmo Delta/efectos de los fármacos , Ritmo Delta/fisiología , Fases del Sueño/efectos de los fármacos , Fases del Sueño/fisiologíaRESUMEN
BACKGROUND: Disturbed sleep is among the most frequent health complaints of people exposed to radio frequency electromagnetic fields (RF-EMF) used in mobile telecommunication, particularly in individuals who consider themselves as EMF hypersensitive (EHS). We aimed at investigating whether the EHS status per se is associated with sleep complaints. Because allelic variants of the gene encoding the L-type, voltage-gated calcium channel Cav1.2 (CACNA1C) were previously associated with sleep complaints reminiscent of those reported by EHS individuals, we also explored whether self-rated EHS status and sleep quality associate with these gene variants. METHODS: A total of 2'040 participants (1'381 females) aged 18-30 years completed online, validated questionnaires on EMF sensitivity, subjective sleep quality, daytime sleepiness, mentation during sleep, and diurnal preference. They also provided a saliva sample for genotyping three functional variants of CACNA1C (rs7304986, rs16929277 and rs2302729). Eligible participants endorsing the question "Are you electro-hypersensitive?" were considered as "EHS" (n = 105), those denying this question yet believing to develop detrimental health symptoms due to prevailing electromagnetic pollution as "attributers" (n = 254), and the remaining participants as "non-EHS" (n = 1'406). We combined the EHS and attributers into one group for binary analyses. In exploratory analyses, we then tested possible associations between EMF sensitivity, subjective sleep variables and CACNA1C variants using linear and logistic regression. We used age, sex, level of education, presence of sleep disorders and habitual mobile phone use as covariates and corrected with Benjamini-Hochberg False Discovery Rate for multiple comparisons. RESULTS: The EHS/attributers consistently reported prolonged sleep latency, reduced sleep quality, higher sleepiness and more nocturnal mentation when compared to non-EHS. Habitual mobile phone use was not associated with self-rated sleep latency and sleep quality scores. While the T-allele of variant rs2302729 of CACNA1C was associated with both, self-reported EMF sensitivity and reduced subjective sleep quality, we found no evidence for the hypothesis that EHS mediates impaired sleep quality via this allelic variant. CONCLUSIONS: Irrespective of reported RF-EMF exposure, self-rated EHS/attributers rated subjective sleep quality worse than non-EHS individuals. TRIAL REGISTRATION: Swiss National Clinical Trials Portal (SNCTP000002285) and ClinicalTrials.gov (NCT03074617).
Asunto(s)
Ondas de Radio , Calidad del Sueño , Femenino , Humanos , Campos Electromagnéticos/efectos adversos , Sueño , Encuestas y CuestionariosRESUMEN
Recently, the Amazonian plant medicine "ayahuasca"-containing the psychedelic compound N,N-dimethyltryptamine (DMT) and numerous ß-carboline alkaloids, such as harmine-has been suggested to exhibit beneficial effects in patients with affective and other mental health disorders. Although ayahuasca ingestion is considered safe, its pharmacokinetics/pharmacodynamics and tolerability profile pose some challenges and may limit the clinical applicability in vulnerable patient populations. While overdosing and the admixture of intolerable plant constituents may explain some of the common adverse reactions, the peroral route of administration may represent another relevant source of gastro-intestinal intolerabilities and unpredictable pharmacokinetics across users. To overcome these challenges, the present work aimed at creating ayahuasca-analogue formulations with improved pharmacokinetics and tolerability profiles. To this end, we developed peroral formulas and compared them with parenteral formulas specifically designed to circumvent the gastro-intestinal tract. In more detail, peroral administration of a capsule (containing purified DMT and harmine) was tested against a combined administration of an oromucosal harmine tablet and an intranasal DMT spray at two dose levels in an open-label within-subject study in 10 healthy male subjects. Pharmacokinetic and pharmacodynamic profiles were assessed by means of continuous blood sampling, vital sign monitoring, and psychometric assessments. Common side effects induced by traditional herbal ayahuasca such as nausea, vomiting, and diarrhea were significantly attenuated by our DMT/harmine formulations. While all preparations were well tolerated, the combined buccal/intranasal administration of harmine and DMT yielded substantially improved pharmacokinetic profiles, indicated by significantly reduced variations in systemic exposure. In conclusion, the combined buccal/intranasal administration of harmine and DMT is an innovative approach that may pave the way towards a safe, rapid-acting, and patient-oriented administration of DMT/harmine for the treatment of affective disorders. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04716335.
RESUMEN
Mood classification from passive data promises to provide an unobtrusive way to track a person's emotions over time. In this exploratory study, we collected phone sensor data and physiological signals from 8 individuals, including 5 healthy participants and 3 depressed patients, for a maximum of 35 days. Participants were asked to answer a digital questionnaire three times daily, resulting in a total of 334 self-reported mood state samples. Gradient-boosting classification was applied to the collected passive data to categorize 4 mood states in the Valence-Energetic Arousal space. The cross-validation results showed better classification performance compared to a baseline model, which always predicts the majority class. The classifier using passive data had an area under the precision-recall curve of 0.39 (SD = 0.1) while the baseline had 0.26 (SD = 0.03), suggesting the presence of information in the collected features that support the classification process. The model identified the entropy of the heart rate and the average physical activity in the preceding 8 hours, along with the max normal-to-normal (NN) sinus beat interval and the NN low frequency-high frequency ratio during the questionnaire completion, as the most important features in its analysis. Additionally, the time range of data collection was considered a contextual factor.
Asunto(s)
Afecto , Emociones , Humanos , Proyectos Piloto , Emociones/fisiología , Encuestas y Cuestionarios , Nivel de Alerta/fisiologíaRESUMEN
Being awake means forming new memories, primarily by strengthening neuronal synapses. The increase in synaptic strength results in increasing neuronal synchronicity, which should result in higher amplitude electroencephalography (EEG) oscillations. This is observed for slow waves during sleep but has not been found for wake oscillations. We hypothesized that this was due to a limitation of spectral power analysis, which does not distinguish between changes in amplitudes from changes in number of occurrences of oscillations. By using cycle-by-cycle analysis instead, we found that theta and alpha oscillation amplitudes increase as much as 30% following 24 h of extended wake. These increases were interrupted during the wake maintenance zone (WMZ), a window just before bedtime when it is difficult to fall asleep. We found that pupil diameter increased during this window, suggesting the ascending arousal system is responsible. In conclusion, wake oscillation amplitudes reflect increased synaptic strength, except during the WMZ.
RESUMEN
The EEG alpha rhythm (â¼ 8-13 Hz) is one of the most salient human brain activity rhythms, modulated by the level of attention and vigilance and related to cerebral energy metabolism. Spectral power in the alpha range in wakefulness and sleep strongly varies among individuals based on genetic predisposition. Knowledge about the underlying genes is scarce, yet small studies indicated that the variant rs5751876 of the gene encoding A2A adenosine receptors (ADORA2A) may contribute to the inter-individual variation. The neuromodulator adenosine is directly linked to energy metabolism as product of adenosine tri-phosphate breakdown and acts as a sleep promoting molecule by activating A1 and A2A adenosine receptors. We performed sleep and positron emission tomography studies in 59 healthy carriers of different rs5751876 alleles, and quantified EEG oscillatory alpha power in wakefulness and sleep, as well as A1 adenosine receptor availability with 18F-CPFPX. Oscillatory alpha power was higher in homozygous C-allele carriers (n = 27, 11 females) compared to heterozygous and homozygous carriers of the T-allele (n(C/T) = 23, n(T/T) = 5, 13 females) (F(18,37) = 2.35, p = 0.014, Wilk's Λ = 0.487). Furthermore, a modulatory effect of ADORA2A genotype on A1 adenosine receptor binding potential was found across all considered brain regions (F(18,40) = 2.62, p = 0.006, Wilk's Λ = 0.459), which remained significant for circumscribed occipital region of calcarine fissures after correction for multiple comparisons. In female participants, a correlation between individual differences in oscillatory alpha power and A1 receptor availability was observed. In conclusion, we confirmed that a genetic variant of ADORA2A affects individual alpha power, while a direct modulatory effect via A1 adenosine receptors in females is suggested.
Asunto(s)
Encéfalo , Receptor de Adenosina A2A , Femenino , Humanos , Adenosina , Encéfalo/diagnóstico por imagen , Electroencefalografía , Variación Genética , Receptor de Adenosina A2A/genética , MasculinoRESUMEN
Sodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Asunto(s)
Oxibato de Sodio , Humanos , Masculino , Oxibato de Sodio/farmacología , Giro del Cíngulo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Vigilia , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
Clinical guidelines recommend sodium oxybate (SXB; the sodium salt of γ-hydroxybutyrate) for the treatment of disturbed sleep and excessive daytime sleepiness in narcolepsy, yet the underlying mode of action is elusive. In a randomised controlled trial in 20 healthy volunteers, we aimed at establishing neurochemical changes in the anterior cingulate cortex (ACC) following SXB-enhanced sleep. The ACC is a core neural hub regulating vigilance in humans. At 2:30 a.m., we administered in a double-blind cross-over manner an oral dose of 50 mg/kg SXB or placebo, to enhance electroencephalography-defined sleep intensity in the second half of nocturnal sleep (11:00 p.m. to 7:00 a.m.). Upon scheduled awakening, we assessed subjective sleepiness, tiredness and mood and measured two-dimensional, J-resolved, point-resolved magnetic resonance spectroscopy (PRESS) localisation at 3-Tesla field strength. Following brain scanning, we used validated tools to quantify psychomotor vigilance test (PVT) performance and executive functioning. We analysed the data with independent t tests, false discovery rate (FDR) corrected for multiple comparisons. The morning glutamate signal (at 8:30 a.m.) in the ACC was specifically increased after SXB-enhanced sleep in all participants in whom good-quality spectroscopy data were available (n = 16; pFDR < 0.002). Further, global vigilance (10th-90th inter-percentile range on the PVT) was improved (pFDR < 0.04) and median PVT response time was shorter (pFDR < 0.04) compared to placebo. The data indicate that elevated glutamate in the ACC could provide a neurochemical mechanism underlying SXB's pro-vigilant efficacy in disorders of hypersomnolence.
Asunto(s)
Trastornos de Somnolencia Excesiva , Narcolepsia , Oxibato de Sodio , Humanos , Oxibato de Sodio/farmacología , Oxibato de Sodio/uso terapéutico , Ácido Glutámico , Giro del Cíngulo/diagnóstico por imagen , Narcolepsia/tratamiento farmacológico , Espectroscopía de Resonancia MagnéticaRESUMEN
BACKGROUND: Too little sleep and the consequences thereof are a heavy burden in modern societies. In contrast to alcohol or illicit drug use, there are no quick roadside or workplace tests for objective biomarkers for sleepiness. We hypothesize that changes in physiological functions (such as sleep-wake regulation) are reflected in changes of endogenous metabolism and should therefore be detectable as a change in metabolic profiles. This study will allow for creating a reliable and objective panel of candidate biomarkers being indicative for sleepiness and its behavioral outcomes. METHODS: This is a monocentric, controlled, randomized, crossover, clinical study to detect potential biomarkers. Each of the anticipated 24 participants will be allocated in randomized order to each of the three study arms (control, sleep restriction, and sleep deprivation). These only differ in the amount of hours slept per night. In the control condition, participants will adhere to a 16/8 h wake/sleep regime. In both sleep restriction and sleep deprivation conditions, participants will accumulate a total sleep deficit of 8 h, achieved by different wake/sleep regimes that simulate real-life scenarios. The primary outcome is changes in the metabolic profile (i.e., metabolome) in oral fluid. Secondary outcome measures will include driving performance, psychomotor vigilance test, d2 Test of Attention, visual attention test, subjective (situational) sleepiness, electroencephalographic changes, behavioral markers of sleepiness, changes in metabolite concentrations in exhaled breath and finger sweat, and correlation of metabolic changes among biological matrices. DISCUSSION: This is the first trial of its kind that investigates complete metabolic profiles combined with performance monitoring in humans over a multi-day period involving different sleep-wake schedules. Hereby, we aim to establish a candidate biomarker panel being indicative for sleepiness and its behavioral outcomes. To date, there are no robust and easily accessible biomarkers for the detection of sleepiness, even though the vast damage on society is well known. Thus, our findings will be of high value for many related disciplines. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT05585515, released on 18.10.2022; Swiss National Clinical Trial Portal SNCTP000005089, registered on 12 August 2022.
Asunto(s)
Privación de Sueño , Somnolencia , Humanos , Privación de Sueño/complicaciones , Estudios Cruzados , Sueño/fisiología , Vigilia/fisiologíaRESUMEN
Sleep loss pervasively affects the human brain at multiple levels. Age-related changes in several sleep characteristics indicate that reduced sleep quality is a frequent characteristic of aging. Conversely, sleep disruption may accelerate the aging process, yet it is not known what will happen to the age status of the brain if we can manipulate sleep conditions. To tackle this question, we used an approach of brain age to investigate whether sleep loss would cause age-related changes in the brain. We included MRI data of 134 healthy volunteers (mean chronological age of 25.3 between the age of 19 and 39 years, 42 females/92 males) from five datasets with different sleep conditions. Across three datasets with the condition of total sleep deprivation (>24 h of prolonged wakefulness), we consistently observed that total sleep deprivation increased brain age by 1-2 years regarding the group mean difference with the baseline. Interestingly, after one night of recovery sleep, brain age was not different from baseline. We also demonstrated the associations between the change in brain age after total sleep deprivation and the sleep variables measured during the recovery night. By contrast, brain age was not significantly changed by either acute (3 h time-in-bed for one night) or chronic partial sleep restriction (5 h time-in-bed for five continuous nights). Together, the convergent findings indicate that acute total sleep loss changes brain morphology in an aging-like direction in young participants and that these changes are reversible by recovery sleep.SIGNIFICANCE STATEMENT Sleep is fundamental for humans to maintain normal physical and psychological functions. Experimental sleep deprivation is a variable-controlling approach to engaging the brain among different sleep conditions for investigating the responses of the brain to sleep loss. Here, we quantified the response of the brain to sleep deprivation by using the change of brain age predictable with brain morphologic features. In three independent datasets, we consistently found increased brain age after total sleep deprivation, which was associated with the change in sleep variables. Moreover, no significant change in brain age was found after partial sleep deprivation in another two datasets. Our study provides new evidence to explain the brainwide effect of sleep loss in an aging-like direction.
Asunto(s)
Privación de Sueño , Sueño , Masculino , Femenino , Humanos , Adulto , Adulto Joven , Privación de Sueño/diagnóstico por imagen , Privación de Sueño/psicología , Sueño/fisiología , Encéfalo/diagnóstico por imagen , Vigilia/fisiología , Factores de TiempoRESUMEN
Acute caffeine intake has been found to increase working memory (WM)-related brain activity in healthy adults without improving behavioral performances. The impact of daily caffeine intake-a ritual shared by 80% of the population worldwide-and of its discontinuation on working memory and its neural correlates remained unknown. In this double-blind, randomized, crossover study, we examined working memory functions in 20 young healthy non-smokers (age: 26.4 ± 4.0 years; body mass index: 22.7 ± 1.4 kg/m2; and habitual caffeine intake: 474.1 ± 107.5 mg/day) in a 10-day caffeine (150 mg × 3 times/day), a 10-day placebo (3 times/day), and a withdrawal condition (9-day caffeine followed by 1-day placebo). Throughout the 10th day of each condition, participants performed four times a working memory task (N-Back, comprising 3- and 0-back), and task-related blood-oxygen-level-dependent (BOLD) activity was measured in the last session with functional magnetic resonance imaging. Compared to placebo, participants showed a higher error rate and a longer reaction time in 3- against 0-back trials in the caffeine condition; also, in the withdrawal condition we observed a higher error rate compared to placebo. However, task-related BOLD activity, i.e., an increased attention network and decreased default mode network activity in 3- versus 0-back, did not show significant differences among three conditions. Interestingly, irrespective of 3- or 0-back, BOLD activity was reduced in the right hippocampus in the caffeine condition compared to placebo. Adding to the earlier evidence showing increasing cerebral metabolic demands for WM function after acute caffeine intake, our data suggest that such demands might be impeded over daily intake and therefore result in a worse performance. Finally, the reduced hippocampal activity may reflect caffeine-associated hippocampal grey matter plasticity reported in the previous analysis. The findings of this study reveal an adapted neurocognitive response to daily caffeine exposure and highlight the importance of classifying impacts of caffeine on clinical and healthy populations.
Asunto(s)
Memoria a Corto Plazo , Síndrome de Abstinencia a Sustancias , Adulto , Humanos , Adulto Joven , Memoria a Corto Plazo/fisiología , Cafeína/efectos adversos , Estudios Cruzados , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Cerebral/fisiología , Método Doble CiegoRESUMEN
Drug repurposing is a strategy to identify new indications for already approved drugs. A recent successful example in psychiatry is ketamine, an anesthetic drug developed in the 1960s, now approved and clinically used as a fast-acting antidepressant. Here, we describe the potential of dexmedetomidine as a psychopharmacological repurposing candidate. This α2-adrenoceptor agonist is approved in the US and Europe for procedural sedation in intensive care. It has shown fast-acting inhibitory effects on perioperative stress-related pathologies, including psychomotor agitation, hyperalgesia, and neuroinflammatory overdrive, proving potentially useful in clinical psychiatry. We offer an overview of the pharmacological profile and effects of dexmedetomidine with potential utility for the treatment of neuropsychiatric symptoms. Dexmedetomidine exerts fast-acting and robust sedation, anxiolytic, analgesic, sleep-modulating, and anti-inflammatory effects. Moreover, the drug prevents postoperative agitation and delirium, possibly via neuroprotective mechanisms. While evidence in animals and humans supports these properties, larger controlled trials in clinical samples are generally scarce, and systematic studies with psychiatric patients do not exist. In conclusion, dexmedetomidine is a promising candidate for an experimental treatment targeting stress-related pathologies common in neuropsychiatric disorders such as depression, anxiety disorders, and posttraumatic stress disorder. First small proof-of-concept studies and then larger controlled clinical trials are warranted in psychiatric populations to test the feasibility and efficacy of dexmedetomidine in these conditions.
Asunto(s)
Ansiolíticos , Dexmedetomidina , Psiquiatría , Humanos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Analgésicos , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Reposicionamiento de Medicamentos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéuticoRESUMEN
Behavioral states naturally alternate between wakefulness and the sleep phases rapid eye movement and nonrapid eye movement sleep. Waking and sleep states are complex processes that are elegantly orchestrated by spatially fine-tuned neurochemical changes of neurotransmitters and neuromodulators including glutamate, acetylcholine, γ-aminobutyric acid, norepinephrine, dopamine, serotonin, histamine, hypocretin, melanin concentrating hormone, adenosine, and melatonin. However, as highlighted in this brief overview, no single neurotransmitter or neuromodulator, but rather their complex interactions within organized neuronal ensembles, regulate waking and sleep states. The neurochemical pathways presented here are aimed to provide a conceptual framework for the understanding of the effects of currently used sleep medications.
Asunto(s)
Neuroquímica , Humanos , Neurotransmisores/fisiología , Sueño/fisiología , Fases del Sueño/fisiología , Sueño REM/fisiología , Vigilia/fisiologíaRESUMEN
For hundreds of years, mankind has been influencing its sleep and waking state through the adenosinergic system. For ~100 years now, systematic research has been performed, first started by testing the effects of different dosages of caffeine on sleep and waking behaviour. About 70 years ago, adenosine itself entered the picture as a possible ligand of the receptors where caffeine hooks on as an antagonist to reduce sleepiness. Since the scientific demonstration that this is indeed the case, progress has been fast. Today, adenosine is widely accepted as an endogenous sleep-regulatory substance. In this review, we discuss the current state of the science in model organisms and humans on the working mechanisms of adenosine and caffeine on sleep. We critically investigate the evidence for a direct involvement in sleep homeostatic mechanisms and whether the effects of caffeine on sleep differ between acute intake and chronic consumption. In addition, we review the more recent evidence that adenosine levels may also influence the functioning of the circadian clock and address the question of whether sleep homeostasis and the circadian clock may interact through adenosinergic signalling. In the final section, we discuss the perspectives of possible clinical applications of the accumulated knowledge over the last century that may improve sleep-related disorders. We conclude our review by highlighting some open questions that need to be answered, to better understand how adenosine and caffeine exactly regulate and influence sleep.
Asunto(s)
Cafeína , Privación de Sueño , Adenosina/farmacología , Cafeína/farmacología , Ritmo Circadiano , Humanos , Sueño/fisiología , VigiliaRESUMEN
It is 50 years ago, in 1972, that the founding conference of the European Sleep Research Society (ESRS) was organised in Basel. Since then the Society has had 13 presidents and a multitude of board members and has organised, among other things, another 24 congresses. At this 50th anniversary, as the 26th ESRS congress is approaching, we have summarised the history of the ESRS. In this review, we provide a background to show why the foundation of a European society was a logical step, and show how, in the course of the past 50 years, the Society changed and grew. We give special attention to some developments that occurred over the years and discuss where the ESRS stands now, and how we foresee its future.
Asunto(s)
Aniversarios y Eventos Especiales , Sociedades Médicas , Predicción , Humanos , Sueño , Sociedades Médicas/historiaRESUMEN
The neuromodulator adenosine and its receptors are mediators of sleep-wake regulation which is known to differ between sexes. We, therefore, investigated sex differences in A1 adenosine receptor (A1AR) availability in healthy human subjects under well-rested conditions using [18F]CPFPX and positron emission tomography (PET). [18F]CPFPX PET scans were acquired in 50 healthy human participants (20 females; mean age ± SD 28.0 ± 5.3 years). Mean binding potential (BPND; Logan's reference tissue model with cerebellum as reference region) and volume of distribution (VT) values were calculated in 12 and 15 grey matter brain regions, respectively. [18F]CPFPX BPND was higher in females compared to males in all investigated brain regions (p < 0.025). The largest differences were found in the pallidum and anterior cingulate cortex, where mean BPND values were higher by 29% in females than in males. In females, sleep efficiency correlated positively and sleep latency negatively with BPND in most brain regions. VT values did not differ between sexes. Sleep efficiency correlated positively with VT in most brain regions in female participants. In conclusion, our analysis gives a first indication for potential sex differences in A1AR availability even under well-rested conditions. A1AR availability as measured by [18F]CPFPX BPND is higher in females compared to males. Considering the involvement of adenosine in sleep-wake control, this finding might partially explain the known sex differences in sleep efficiency and sleep latency.