Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 441(1): 114155, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39002689

RESUMEN

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5ß1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.

2.
Oncogene ; 41(15): 2254-2264, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217792

RESUMEN

More than 70% of human NRASmut melanomas are resistant to MEK inhibitors highlighting the crucial need for efficient therapeutic strategies for these tumors. CD147, a membrane receptor, is overexpressed in most cancers including melanoma and is associated with poor prognosis. We show here that CD147i, a specific inhibitor of CD147/VEGFR-2 interaction represents a potential therapeutic strategy for NRASmut melanoma cells. It significantly inhibited the malignant properties of NRASmut melanomas ex vivo and in vivo. Importantly, NRASmut patient's-derived xenografts, which were resistant to MEKi, became sensitive when combined with CD147i leading to decreased proliferation ex vivo and tumor regression in vivo. Mechanistic studies revealed that CD147i effects were mediated through STAT3 pathway. These data bring a proof of concept on the impact of the inhibition of CD147/VEGFR-2 interaction on melanoma progression and represents a new therapeutic opportunity for NRASmut melanoma when combined with MEKi.


Asunto(s)
Basigina , Melanoma , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Basigina/antagonistas & inhibidores , Basigina/metabolismo , Línea Celular Tumoral , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas de la Membrana/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638342

RESUMEN

Malignant melanoma is one of the most aggressive skin cancers and is characterized by early lymph node metastasis and the capacity to develop resistance to therapies. Hence, understanding the regulation of lymphangiogenesis through mechanisms contributing to lymphatic vessel formation represents a treatment strategy for metastatic cancer. We have previously shown that CD147, a transmembrane glycoprotein overexpressed in melanoma, regulates the angiogenic process in endothelial cells. In this study, we show a correlation between high CD147 expression levels and the number of lymphatic vessels expressing LYVE-1, Podoplanin, and VEGFR-3 in human melanoma lymph nodes. CD147 upregulates in vitro lymphangiogenesis and its related mediators through the PROX-1 transcription factor. In vivo studies in a melanoma model confirmed that CD147 is involved in metastasis through a similar mechanism as in vitro. This study, demonstrating the paracrine role of CD147 in the lymphangiogenesis process, suggests that CD147 could be a promising target for the inhibition of melanoma-associated lymphangiogenesis.

4.
FEBS J ; 288(15): 4507-4540, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33529438

RESUMEN

Activating stimulator of interferon genes to turn immunologically refractive cold tumor hot is an exciting therapeutic approach to increase the clinical responsiveness of some human cancers to immune checkpoint inhibitors. DNA damaging drugs and PARP inhibitors are two types of agents that have demonstrated this potential. Inhibitors of Chk1 or Wee1 induce DNA damage in cancer cells in predominantly the S-phase population. Increased cytoplasmic single-stranded and double-stranded DNA (dsDNA) from this DNA damage resulted in increased tank-binding kinase 1 (TBK1) phosphorylation in a range of cancer cell lines. However, despite robust increases in pTBK1, no downstream consequences of TBK1 phosphorylation were observed (namely no increase in pIRF3/7, interferon regulatory factor (IRF)-dependent gene expression or a type I IFN response). In combination with cytotoxic chemotherapy such as gemcitabine or camptothecin (CPT), Chk1 inhibition increased cytoplasmic dsDNA compared with the cytotoxic alone but attenuated the cytotoxic chemotherapy-induced increase in IRF1 protein and STAT1 phosphorylation through inhibition of nuclear RelB translocation. Despite increased cytoplasmic DNA and TBK1 activation, inhibition of Chk1, ataxia telangiectasia and Rad3-related protein, or Wee1 failed to activate a type I IFN response. We discuss the potential underlying mechanisms for this lack of IRF-dependent gene response and how this might influence the clinical strategies of combining Chk1 or Wee1 inhibitors with immune checkpoint inhibitors.


Asunto(s)
Daño del ADN , Inhibidores de Puntos de Control Inmunológico/toxicidad , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Células HT29 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT1/metabolismo
6.
Therapie ; 75(2): 183-193, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32173061

RESUMEN

The therapeutic management of cancers has undergone considerable changes due to the emergence of genomics tools and tumor molecular deciphering. In this context, a dual pharmacological approach based on pharmacogenomic analyses and therapeutic drug monitoring is now part of the routine care in cancer management for personalized therapies. First, molecular and immune profiling of tumors allows the emergence of new pharmacological targets in common as well as in rare cancers. Second, pharmacogenomic analyses coupled to therapeutic drug monitoring guide the prescription by adjusting regimen and managing drug resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Oncología Médica/tendencias , Neoplasias/tratamiento farmacológico , Farmacología/tendencias , Enfermedades Raras/tratamiento farmacológico , Resistencia a Antineoplásicos , Humanos , Terapia Molecular Dirigida , Farmacogenética
7.
Cancers (Basel) ; 11(11)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744072

RESUMEN

Microenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation of the tumor microenvironment and cancer progression by several mechanisms-in particular, by the control of glycolysis and also by its well-known ability to induce proteinases leading to matrix degradation, tumor cell invasion, metastasis and angiogenesis. Accumulating evidence has demonstrated the role of CD147 expression in tumor progression and prognosis, suggesting it as a relevant tumor biomarker for cancer diagnosis and prognosis, as well as validating its potential as a promising therapeutic target in cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...