Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38793744

RESUMEN

Since the beginning of the COVID-19 pandemic, different viral vector-based and mRNA vaccines directed against the SARS-CoV-2 "S" spike glycoprotein have been developed and have shown a good profile in terms of safety and efficacy. Nevertheless, an unbiased comparison of vaccination efficiency, including post-vaccination neutralizing activity, between the different vaccines remains largely unavailable. This study aimed to compare the efficacy of one mRNA (BNT162b2) and two non-replicating adenoviral vector vaccines (ChAdOx1 nCoV-19 and Sputnik V) in a cohort of 1120 vaccinated Palestinian individuals who received vaccines on an availability basis and which displayed a unique diversity of genetic characteristics. We assessed the level of anti-S antibodies and further determined the antibody neutralizing activity in 261 of those individuals vaccinated with BNT162b2a (121), ChAdOx1 (72) or Sputnik V (68). Our results showed no significant difference in the distribution of serum-neutralizing activity or S-antibody serum levels for the three groups of vaccines, proving equivalence in efficacy for the three vaccines under real-life conditions. In addition, none of the eight demographic parameters tested had an influence on vaccination efficacy. Regardless of the vaccine type, the vaccination campaign ultimately played a pivotal role in significantly reducing the morbidity and mortality associated with COVID-19 in Palestine.

2.
J Cell Sci ; 135(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588197

RESUMEN

In Trypanosoma brucei, transition fibres (TFs) form a nine-bladed pattern-like structure connecting the base of the flagellum to the flagellar pocket membrane. Despite the characterization of two TF proteins, CEP164C and T. brucei (Tb)RP2, little is known about the organization of these fibres. Here, we report the identification and characterization of the first kinetoplastid-specific TF protein, named TFK1 (Tb927.6.1180). Bioinformatics and functional domain analysis identified three distinct domains in TFK1 - an N-terminal domain of an unpredicted function, a coiled-coil domain involved in TFK1-TFK1 interaction and a C-terminal intrinsically disordered region potentially involved in protein interaction. Cellular immunolocalization showed that TFK1 is a newly identified basal body maturation marker. Furthermore, using ultrastructure expansion and immuno-electron microscopies we localized CEP164C and TbRP2 at the TF, and TFK1 on the distal appendage matrix of the TF. Importantly, RNAi-mediated knockdown of TFK1 in bloodstream form cells induced misplacement of basal bodies, a defect in the furrow or fold generation, and eventually cell death. We hypothesize that TFK1 is a basal body positioning-specific actor and a key regulator of cytokinesis in the bloodstream form Trypanosoma brucei.


Asunto(s)
Trypanosoma brucei brucei , Cuerpos Basales/metabolismo , Citocinesis , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo
3.
Parasite ; 29: 14, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35262485

RESUMEN

The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.


Title: TbKINX1B, un nouveau partenaire de BILBO1, et une protéine essentielle dans la forme sanguine de Trypanosoma brucei. Abstract: La poche flagellaire (PF) de l'agent pathogène Trypanosoma brucei est une structure importante à copie unique formée par l'invagination de la membrane pelliculaire. Elle est le site unique de l'endo- et de l'exocytose et est nécessaire à la pathogénicité du parasite. La PF est constituée de sous-domaines structurels distincts, le moins exploré étant le collier de poche flagellaire (CPF). TbBILBO1 est la première protéine du CPF décrite. Elle est essentielle pour la survie du parasite et la biogenèse de la PF et du CPF. Dans ce travail, nous caractérisons TbKINX1B, un nouveau partenaire de TbBILBO1. Nous démontrons que TbKINX1B est localisée au niveau des corps basaux, du quartet de microtubules (un ensemble de quatre microtubules) et du CPF chez T. brucei. La diminution de l'expression de TbKINX1B par ARN interférence dans les formes sanguines est létale, induisant une perturbation globale du réseau endomembranaire. Dans les formes procycliques, l'ARN interférence conduit à un phénotype mineur avec un petit nombre de cellules présentant des morphologies de type épimastigote, avec un kinétoplaste mal placé. Nos résultats caractérisent TbKINX1B comme la première kinésine putative à être localisée à la fois au niveau des corps basaux et du CPF avec un rôle potentiel dans le transport de cargaison le long du quartet de microtubules.


Asunto(s)
Trypanosoma brucei brucei , Flagelos/genética , Flagelos/metabolismo , Microtúbulos , Proteínas Protozoarias/química , Interferencia de ARN , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
4.
Microorganisms ; 9(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34835460

RESUMEN

BACKGROUND: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.

5.
PLoS Pathog ; 17(8): e1009329, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34339455

RESUMEN

The flagellar pocket (FP) is the only endo- and exocytic organelle in most trypanosomes and, as such, is essential throughout the life cycle of the parasite. The neck of the FP is maintained enclosed around the flagellum via the flagellar pocket collar (FPC). The FPC is a macromolecular cytoskeletal structure and is essential for the formation of the FP and cytokinesis. FPC biogenesis and structure are poorly understood, mainly due to the lack of information on FPC composition. To date, only two FPC proteins, BILBO1 and FPC4, have been characterized. BILBO1 forms a molecular skeleton upon which other FPC proteins can, theoretically, dock onto. We previously identified FPC4 as the first BILBO1 interacting partner and demonstrated that its C-terminal domain interacts with the BILBO1 N-terminal domain (NTD). Here, we report by yeast two-hybrid, bioinformatics, functional and structural studies the characterization of a new FPC component and BILBO1 partner protein, BILBO2 (Tb927.6.3240). Further, we demonstrate that BILBO1 and BILBO2 share a homologous NTD and that both domains interact with FPC4. We have determined a 1.9 Å resolution crystal structure of the BILBO2 NTD in complex with the FPC4 BILBO1-binding domain. Together with mutational analyses, our studies reveal key residues for the function of the BILBO2 NTD and its interaction with FPC4 and evidenced a tripartite interaction between BILBO1, BILBO2, and FPC4. Our work sheds light on the first atomic structure of an FPC protein complex and represents a significant step in deciphering the FPC function in Trypanosoma brucei and other pathogenic kinetoplastids.


Asunto(s)
Citocinesis , Citoesqueleto/metabolismo , Flagelos/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Homología de Secuencia , Técnicas del Sistema de Dos Híbridos
6.
iScience ; 24(5): 102422, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33997700

RESUMEN

Extended synaptotagmins (E-Syts) localize at membrane contact sites between the endoplasmic reticulum (ER) and the plasma membrane to mediate inter-membrane lipid transfer and control plasma membrane lipid homeostasis. All known E-Syts contain an N-terminal transmembrane (TM) hairpin, a central synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain, and three or five C2 domains at their C termini. Here we report an uncharacterized E-Syt from the protist parasite Trypanosoma brucei, namely, TbE-Syt. TbE-Syt contains only two C2 domains (C2A and C2B), making it the shortest E-Syt known by now. We determined a 1.5-Å-resolution crystal structure of TbE-Syt-C2B and revealed that it binds lipids via both Ca2+- and PI(4,5)P2-dependent means. In contrast, TbE-Syt-C2A lacks the Ca2+-binding site but may still interact with lipids via a basic surface patch. Our studies suggest a mechanism for how TbE-Syt tethers the ER membrane tightly to the plasma membrane to transfer lipids between the two organelles.

7.
J Biol Chem ; 295(6): 1489-1499, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31882537

RESUMEN

Trypanosoma brucei is a protist parasite causing sleeping sickness and nagana in sub-Saharan Africa. T. brucei has a single flagellum whose base contains a bulblike invagination of the plasma membrane called the flagellar pocket (FP). Around the neck of the FP on its cytoplasmic face is a structure called the flagellar pocket collar (FPC), which is essential for FP biogenesis. BILBO1 was the first characterized component of the FPC in trypanosomes. BILBO1's N-terminal domain (NTD) plays an essential role in T. brucei FPC biogenesis and is thus vital for the parasite's survival. Here, we report a 1.6-Å resolution crystal structure of TbBILBO1-NTD, which revealed a conserved horseshoe-like hydrophobic pocket formed by an unusually long loop. Results from mutagenesis experiments suggested that another FPC protein, FPC4, interacts with TbBILBO1 by mainly contacting its three conserved aromatic residues Trp-71, Tyr-87, and Phe-89 at the center of this pocket. Our findings disclose the binding site of TbFPC4 on TbBILBO1-NTD, which may provide a basis for rational drug design targeting BILBO1 to combat T. brucei infections.


Asunto(s)
Flagelos/química , Trypanosoma brucei brucei/química , Ubiquitina/química , Cristalografía por Rayos X , Flagelos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Ubiquitina/metabolismo
8.
Parasite Immunol ; 41(8): e12632, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31099071

RESUMEN

Trypanosoma brucei gambiense, an extracellular eukaryotic flagellate parasite, is the main etiological agent of human African trypanosomiasis (HAT) or sleeping sickness. Dendritic cells (DCs) play a pivotal role at the interface between innate and adaptive immune response and are implicated during HAT. In this study, we investigated the effects of T gambiense and its excreted/secreted factors (ESF) on the phenotype of human monocyte-derived DCs (Mo-DCs). Mo-DCs were cultured with trypanosomes, lipopolysaccharide (LPS), ESF derived from T gambiense bloodstream strain Biyamina (MHOM/SD/82), or both ESF and LPS. Importantly, ESF reduced the expression of the maturation markers HLA-DR and CD83, as well as the secretion of IL-12, TNF-alpha and IL-10, in LPS-stimulated Mo-DCs. During mixed-leucocyte reactions, LPS- plus ESF-exposed DCs induced a non-significant decrease in the IFN-gamma/IL-10 ratio of CD4 + T-cell cytokines. Based on the results presented here, we raise the hypothesis that T gambiense has developed an immune escape strategy through the secretion of paracrine mediators in order to limit maturation and activation of human DCs. The identification of the factor(s) in the T gambiense ESF and of the DCs signalling pathway(s) involved may be important in the development of new therapeutic targets.


Asunto(s)
Células Dendríticas/inmunología , Monocitos/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma brucei gambiense/inmunología , Tripanosomiasis Africana/inmunología , Animales , Células Dendríticas/parasitología , Femenino , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Interacciones Huésped-Parásitos , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Lipopolisacáridos/inmunología , Ratones , Monocitos/parasitología , Proteínas Protozoarias/genética , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/parasitología , Trypanosoma brucei gambiense/genética , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/parasitología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
9.
Am J Hum Genet ; 103(3): 400-412, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30122540

RESUMEN

Multiple morphological abnormalities of the sperm flagellum (MMAF) is a severe form of male infertility defined by the presence of a mosaic of anomalies, including short, bent, curled, thick, or absent flagella, resulting from a severe disorganization of the axoneme and of the peri-axonemal structures. Mutations in DNAH1, CFAP43, and CFAP44, three genes encoding axoneme-related proteins, have been described to account for approximately 30% of the MMAF cases reported so far. Here, we searched for pathological copy-number variants in whole-exome sequencing data from a cohort of 78 MMAF-affected subjects to identify additional genes associated with MMAF. In 7 of 78 affected individuals, we identified a homozygous deletion that removes the two penultimate exons of WDR66 (also named CFAP251), a gene coding for an axonemal protein preferentially localized in the testis and described to localize to the calmodulin- and spoke-associated complex at the base of radial spoke 3. Sequence analysis of the breakpoint region revealed in all deleted subjects the presence of a single chimeric SVA (SINE-VNTR-Alu) at the breakpoint site, suggesting that the initial deletion event was potentially mediated by an SVA insertion-recombination mechanism. Study of Trypanosoma WDR66's ortholog (TbWDR66) highlighted high sequence and structural analogy with the human protein and confirmed axonemal localization of the protein. Reproduction of the human deletion in TbWDR66 impaired flagellar movement, thus confirming WDR66 as a gene associated with the MMAF phenotype and highlighting the importance of the WDR66 C-terminal region.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al Calcio/genética , Flagelos/genética , Infertilidad Masculina/genética , Mutación/genética , Cola del Espermatozoide/patología , Espermatozoides/anomalías , Axonema/genética , Estudios de Cohortes , Dineínas/genética , Homocigoto , Humanos , Masculino , Testículo/patología , Secuenciación del Exoma/métodos
10.
Nat Commun ; 9(1): 686, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449551

RESUMEN

Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human.


Asunto(s)
Flagelos/fisiología , Infertilidad Masculina/genética , Proteínas de Microtúbulos/genética , Mutación , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Espermatozoides/fisiología , Trypanosoma/fisiología , Adulto , Animales , Axonema , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estudios de Cohortes , Proteínas del Citoesqueleto , Fertilidad , Flagelos/metabolismo , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Persona de Mediana Edad , Motilidad Espermática , Espermatozoides/metabolismo , Secuenciación del Exoma
11.
PLoS Pathog ; 13(11): e1006710, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29091964

RESUMEN

Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP) but remains attached to the cell body via the flagellum attachment zone (FAZ). The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ) that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC) circumvents the flagellum. Overlapping the FPC is the hook complex (HC) (a sub-structure of the previously named bilobe) that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.


Asunto(s)
Flagelos/metabolismo , Microtúbulos/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Exocitosis/fisiología , Humanos , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo
12.
PLoS Negl Trop Dis ; 10(11): e0005125, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27855164

RESUMEN

Trypanosoma brucei gambiense is the main causative agent of Human African Trypanosomiasis (HAT), also known as sleeping sickness. Because of limited alternatives and treatment toxicities, new therapeutic options are urgently needed for patients with HAT. Sterol 14alpha-demethylase (CYP51) is a potential drug target but its essentiality has not been determined in T. brucei. We used a tetracycline-inducible RNAi system to assess the essentiality of CYP51 in T. brucei bloodstream form (BSF) cells and we evaluated the effect of posaconazole, a well-tolerated triazole drug, within a panel of virulent strains in vitro and in a murine model. Expression of CYP51 in several T. brucei cell lines was demonstrated by western blot and its essentiality was demonstrated by RNA interference (CYP51RNAi) in vitro. Following reduction of TbCYP51 expression by RNAi, cell growth was reduced and eventually stopped compared to WT or non-induced cells, showing the requirement of CYP51 in T. brucei. These phenotypes were rescued by addition of ergosterol. Additionally, CYP51RNAi induction caused morphological defects with multiflagellated cells (p<0.05), suggesting cytokinesis dysfunction. The survival of CYP51RNAi Doxycycline-treated mice (p = 0.053) and of CYP51RNAi 5-day pre-induced Doxycycline-treated mice (p = 0.008) were improved compared to WT showing a CYP51 RNAi effect on trypanosomal virulence in mice. The posaconazole concentrations that inhibited parasite growth by 50% (IC50) were 8.5, 2.7, 1.6 and 0.12 µM for T. b. brucei 427 90-13, T. b. brucei Antat 1.1, T. b. gambiense Feo (Feo/ITMAP/1893) and T. b. gambiense Biyamina (MHOM/SD/82), respectively. During infection with these last three virulent strains, posaconazole-eflornithine and nifurtimox-eflornithine combinations showed similar improvement in mice survival (p≤0.001). Our results provide support for a CYP51 targeting based treatment in HAT. Thus posaconazole used in combination may represent a therapeutic alternative for trypanosomiasis.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Nifurtimox/uso terapéutico , Esterol 14-Desmetilasa/metabolismo , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Antibacterianos/uso terapéutico , Citocinesis , Modelos Animales de Enfermedad , Doxiciclina/uso terapéutico , Eflornitina/uso terapéutico , Ergosterol/farmacología , Humanos , Ratones , Fenotipo , Interferencia de ARN , Esterol 14-Desmetilasa/genética , Triazoles/farmacología , Triazoles/uso terapéutico , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/parasitología
14.
PLoS Pathog ; 11(3): e1004654, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25822645

RESUMEN

The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the annulus/horseshoe shaped flagellar pocket collar (FPC). To date the only known component of the FPC is the protein BILBO1, a cytoskeleton protein that has a N-terminus that contains an ubiquitin-like fold, two EF-hand domains, plus a large C-terminal coiled-coil domain. BILBO1 has been shown to bind calcium, but in this work we demonstrate that mutating either or both calcium-binding domains prevents calcium binding. The expression of deletion or mutated forms of BILBO1 in trypanosomes and mammalian cells demonstrate that the coiled-coil domain is necessary and sufficient for the formation of BILBO1 polymers. This is supported by Yeast two-hybrid analysis. Expression of full-length BILBO1 in mammalian cells induces the formation of linear polymers with comma and globular shaped termini, whereas mutation of the canonical calcium-binding domain resulted in the formation of helical polymers and mutation in both EF-hand domains prevented the formation of linear polymers. We also demonstrate that in T. brucei the coiled-coil domain is able to target BILBO1 to the FPC and to form polymers whilst the EF-hand domains influence polymers shape. This data indicates that BILBO1 has intrinsic polymer forming properties and that binding calcium can modulate the form of these polymers. We discuss whether these properties can influence the formation of the FPC.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Flagelos/metabolismo , Multimerización de Proteína/fisiología , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Flagelos/genética , Humanos , Mutación , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
15.
J Cell Sci ; 128(7): 1294-307, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25673876

RESUMEN

Cilia and flagella are microtubule-based organelles present at the surface of most cells, ranging from protozoa to vertebrates, in which these structures are implicated in processes from morphogenesis to cell motility. In vertebrate neurons, microtubule-associated MAP6 proteins stabilize cold-resistant microtubules through their Mn and Mc modules, and play a role in synaptic plasticity. Although centrioles, cilia and flagella have cold-stable microtubules, MAP6 proteins have not been identified in these organelles, suggesting that additional proteins support this role in these structures. Here, we characterize human FAM154A (hereafter referred to as hSAXO1) as the first human member of a widely conserved family of MAP6-related proteins specific to centrioles and cilium microtubules. Our data demonstrate that hSAXO1 binds specifically to centriole and cilium microtubules. We identify, in vivo and in vitro, hSAXO1 Mn modules as responsible for microtubule binding and stabilization as well as being necessary for ciliary localization. Finally, overexpression and knockdown studies show that hSAXO1 modulates axoneme length. Taken together, our findings suggest a fine regulation of hSAXO1 localization and important roles in cilium biogenesis and function.


Asunto(s)
Cilios/metabolismo , Proteínas del Ojo/metabolismo , Microtúbulos/metabolismo , Axonema/genética , Axonema/metabolismo , Centriolos/genética , Centriolos/metabolismo , Cilios/química , Cilios/genética , Proteínas del Ojo/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética
16.
PLoS One ; 7(2): e31344, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22355359

RESUMEN

In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.


Asunto(s)
Movimiento Celular/fisiología , Flagelos/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/metabolismo , Secuencia de Aminoácidos , Animales , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Orgánulos/metabolismo , Unión Proteica , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/genética
17.
Parasit Vectors ; 1(1): 21, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-18616805

RESUMEN

BACKGROUND: Trypanosoma brucei is a haemoflagellate pathogen of man, wild animals and domesticated livestock in central and southern Africa. In all life cycle stages this parasite has a single mitochondrion that contains a uniquely organised genome that is condensed into a flat disk-like structure called the kinetoplast. The kinetoplast is essential for insect form procyclic cells and therefore is a potential drug target. The kinetoplast is unique in nature because it consists of novel structural proteins and thousands of circular, interlocking, DNA molecules (kDNA). Secondly, kDNA replication is critically timed to coincide with nuclear S phase and new flagellum biogenesis. Thirdly, the kinetoplast is physically attached to the flagellum basal bodies via a structure called the tripartite attachment complex (TAC). The TAC consists of unilateral filaments (within the mitochondrion matrix), differentiated mitochondrial membranes and exclusion-zone filaments that extend from the distal end of the basal bodies. To date only one protein, p166, has been identified to be a component of the TAC. RESULTS: In the work presented here we provide data based on a novel EM technique developed to label and characterise cytoskeleton structures in permeabilised cells without extraction of mitochondrion membranes. We use this protocol to provide data on a new monoclonal antibody reagent (Mab 22) and illustrate the precise localisation of basal body-mitochondrial linker proteins. Mab 22 binds to these linker proteins (exclusion-zone filaments) and provides a new tool for the characterisation of cytoskeleton mediated kinetoplast segregation. CONCLUSION: The antigen(s) recognised by Mab 22 are cytoskeletal, insensitive to extraction by high concentrations of non-ionic detergent, extend from the proximal region of basal bodies and bind to the outer mitochondrial membrane. This protein(s) is the first component of the TAC exclusion-zone fibres to be identified. Mab 22 will therefore be important in characterising TAC biogenesis.

18.
PLoS Biol ; 6(5): e105, 2008 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18462016

RESUMEN

Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP), an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi)-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis.


Asunto(s)
Citoesqueleto/metabolismo , Endocitosis , Exocitosis , Orgánulos/metabolismo , Trypanosoma brucei brucei/citología , Animales , Citocinesis , Flagelos/metabolismo , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Orgánulos/genética , Orgánulos/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestructura
19.
J Cell Sci ; 119(Pt 9): 1852-63, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16608878

RESUMEN

The NIMA-related kinase 2 (NEK 2) has important cell cycle functions related to centriole integrity and splitting. Trypanosoma brucei does not possess centrioles, however, cytokinesis is coupled to basal body separation events. Here we report the first functional characterisation of a T. brucei basal body-cytoskeletal NIMA-related kinase (NRK) protein, TbNRKC. The TbNRKC kinase domain has high amino acid identity with the human NEK1 kinase domain (50%) but also shares 42% identity with human NEK2. TbNRKC is expressed in bloodstream and procyclic cells and functions as a bona fide kinase in vitro. Remarkably, RNAi knockdown of TbNRKC and overexpression of kinase-dead TbNRKC in procyclic forms induces the accumulation of cells with four basal bodies, whereas overexpression of active protein produces supernumary basal bodies and blocks cytokinesis. TbNRKC is located on mature and immature basal bodies and is the first T. brucei NRK to be found associated with the basal body cytokinesis pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Flagelos/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Flagelos/metabolismo , Humanos , Datos de Secuencia Molecular , Quinasa 1 Relacionada con NIMA , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/genética , Interferencia de ARN , Alineación de Secuencia , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA