Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr For Rep ; 10(5): 386-400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301227

RESUMEN

Purpose of Review: Conventional formaldehyde-based adhesives for wood-based composite panels are subject to significant concerns due to their formaldehyde emissions. Over the past decade, the wood adhesive industry has undergone a considerable transformation that is characterized by a major push in bio-adhesive development. Various bio-based materials have been explored to create alternatives to conventional formaldehyde-based adhesives. Moreover, growing interest in circularity has led to increasingly exploiting industrial coproducts and by-products to find innovative solutions. Recent Findings: Industrial production generates many coproducts that can serve as renewable resources to produce eco-friendly materials. These coproducts offer alternative supply sources for material production without encroaching on food production. Many bio-based compounds or coproducts, such as saccharides, proteins, tannins, and lignocellulosic biomass, can also be used to develop bio-based adhesives. As part of ongoing efforts to reduce formaldehyde emissions, new hardeners and crosslinkers are being developed to replace formaldehyde and bio-scavengers. Other alternatives, such as binderless panels, are also emerging. Summary: This review focuses on sources of bio-based material derived from by-products of various industries, which have many advantages and disadvantages when incorporated into adhesives. Modification methods to enhance their properties and performance in wood-based panels are also discussed. Additionally, alternatives for developing low-emission or formaldehyde-free adhesives are addressed, including hardeners, bio-scavengers, and binderless options. Finally, the environmental impact of bio-based adhesives compared to that of synthetic alternatives is detailed.

2.
Holzforschung ; 78(4): 244-256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605863

RESUMEN

Wood is a natural composite widely employed as a residential building interior finishing. Although wood is readily available and offers benefits to the occupants, such as enhanced well-being, it is rarely employed in commercial construction due, amongst others, to the potential hazard of fire propagation. The application of flame retardant (FR) treatments leads to a reduction of wood flammability and supports wood as interior finishing. Polyelectrolyte complexes (PECs) deposition is an innovative surface treatment that has already proven its efficiency for fabrics. For wood, recent studies have highlighted that the weight gain impacted the fire-retardancy, and a minimum of 2 wt.-% was set to obtain fire protection. This study explored the potential of surface delignification to activate the wood surface and facilitate the PEC impregnation. Yellow birch (Betula alleghaniensis, Britt.) was surface delignified (0.3 mm) using sodium chlorite. The treatment impact on wood was evaluated by spectroscopy analysis (FTIR, Raman), and the increase in wood wettability was demonstrated (contact angle decreases from 50° to 35° after the surface delignification). Then, PECs consisting of polyethyleneimine and sodium phytate were surface impregnated in wood and delignified wood. The flame retardancy was evaluated using a cone calorimeter. Despite the increase in weight gain (1.5 wt.-% ± 0.3 wt.-% to 4.3 wt.-% ± 2.5 wt.-%), fire performance was not improved. This study demonstrates that lignin strongly affects char formation, even in the presence of PECs.

3.
Holzforschung ; 77(5): 356-367, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37252090

RESUMEN

Wood is a biosourced material with unique aesthetic features due to its anatomy and chemical composition. White oak wood surface color can be modified with the use of iron salts, which react with wood phenolic extractives, present as free molecules in wood porous structure. The impact of modifying wood surface color with iron salts on the final appearance of wood, including its color, grain contrast and surface roughness, was evaluated in this study. Results showed that following the application of iron (III) sulphate aqueous solutions on white oak wood surface, its roughness increased, which is due to grain raising after wetting of wood surface. The color modification of wood surface with iron (III) sulphate aqueous solutions was compared with a non-reactive water based blue stain. The contrast associated to wood grain that was expressed by the standard deviation of luminance values in wood images, also increased after application of the iron (III) sulphate aqueous solution on white oak wood surface. The comparison of contrast changes showed that wood samples stained with iron (III) sulphate on their curved surface had the highest increase in grain contrast compared to iron-stained wood showing the straight grain and to wood surfaces colored by a non-reactive water-based stain for both curved and straight grains.

4.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36987366

RESUMEN

Discoloration of wood coatings due to fungal growth negatively affects the aesthetic properties of the coatings, and new ways to control fungal growth on coatings are needed. For this reason, silver nanoparticles (AgNPs) have been incorporated in acrylic latexes as antifungal agents. Using miniemulsion polymerization, latexes were prepared with two types of initiators (hydrophilic and hydrophobic) to assess the influence of the initiator type on AgNPs dispersion, both within the latex particles and the dry film. In addition, the impact of NP dispersion on resistance to black-stain fungi (Aureobasidium pullulans) was also evaluated. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis indicates that acrylic latexes prepared with azobisisobutyronitrile (AIBN) as the initiator contain more AgNPs than those prepared with potassium persulfate (KPS). Cryo-TEM and SEM analyses show that the distribution of the AgNPs within the polymer particles is influenced by the nature of the initiator. When AIBN, a hydrophobic initiator, is used, the AgNPs appear to be closer to the surface of the polymer particles and more evenly distributed. However, the antifungal efficiency of the AgNPs-embedded latexes against A. pullulans is found to be higher when KPS is used, despite this initiator leading to a smaller amount of incorporated AgNPs and a less uniform dispersion of the nanoparticles.

5.
Polymers (Basel) ; 14(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745947

RESUMEN

Hybrid free-radical/cationic systems can generate phase-separated polymers or interpenetrating networks driven by photopolymerization. In this study, phase separation of a ternary mixture composed of a polybutadiene urethane diacrylate (PBUDA), a cycloaliphatic diepoxyde (CE), and hexanediol dimethacrylate (HDDMA) was investigated. Using systematic variations of the initial composition of the mixture, a miscibility phase diagram of the ternary mixture was established. Based on this diagram, a reactive copolymer (poly(butyl acrylate-co-glycidyl methacrylate) (PBGMA)) was introduced in a reference hybrid system to manipulate the crosslinking network, polymer morphology, and properties (e.g., roughness, gloss, strain at break, and glass transition temperature Tg). When cured as a coating, the ternary hybrid system showed a depthwise gradient of epoxy conversion, and thereby developed a mostly cured skin above a viscous sublayer of uncured monomer. This skin can develop compressive stress due to the swelling from the diffusion of unreacted monomers beneath, and if the compressive stress is significantly high, wrinkles appear on the coating's surface. This work highlights how both skin thickness and elastic modulus impact wrinkle frequency and amplitude. It was demonstrated that these wrinkle parameters can be manipulated in the ternary system by the addition of PBGMA. We also demonstrated that by employing UV irradiation and varying the PBGMA content, it is possible to engineer coatings that range from smooth surfaces with high gloss to wrinkled topographies with a very low associated gloss.

6.
Macromolecules ; 55(8): 3129-3139, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35502195

RESUMEN

Simultaneous photopolymerization of radical and cationic systems is one strategy to generate polymer network architectures named interpenetrating polymer networks (IPNs). In these hybrid systems, phase separation and final polymer morphology are ultimately governed by thermodynamic incompatibility and polymerization kinetics. This behavior is quite complex, as numerous factors can affect polymerization kinetics including monomer/oligomer viscosity and structure, light intensity, photoinitiator content and absorbance, cross-linking, vitrification, etc. In this work, the impact of photoinitiator concentration and monomer fraction on surface morphologies in a hybrid radical/cationic phase-separated system was examined. Wrinkles formed on the surface of photopolymerized films depend on the polymerization rate and acrylate/epoxy ratio. This phenomenon is partially explained by the rapid polymerization rate associated with the development of an epoxy matrix and a smaller acrylate domain. The size and shape of the wrinkles can be controlled by varying formulation parameters (mainly, composition) and photoinitiator content. It was possible to create surface roughness and consequently decrease the gloss by controlling the polymerization kinetics and phase-separated morphology. This study demonstrates that the morphology, polymerization kinetics, and film properties (e.g., gloss, transparency) can be manipulated with the ratio of the acrylate/epoxy mixture and the photoinitiator content.

7.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502926

RESUMEN

Fire protection has been a major challenge in wood construction for many years, mainly due to the high flame spread risk associated with wood flooring. Wood fire-retardancy is framed by two main axes: coating and bulk impregnation. There is a growing need for economically and environmentally friendly alternatives. The study of polyelectrolyte complexes (PECs) for wood substrates is in its infancy, but PECs' versatility and eco-friendly character are already recognized for fabric fire-retardancy fabrics. In this study, a new approach to PEC characterization is proposed. First, PECs, which consist of polyethyleneimine and sodium phytate, were chemically and thermally characterized to select the most promising systems. Then, yellow birch (Betula alleghaniensis Britt.) was surface-impregnated under reduced pressure with the two PECs identified as the best options. Overall, wood fire-retardancy was improved with a low weight gain of 2 wt.% without increasing water uptake.

8.
J Microencapsul ; 35(5): 428-438, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30189763

RESUMEN

Intumescent fire retardant (IFR) coatings are nowadays considered as the most effective flame retardant (FR) treatment. Nevertheless, the principal compound in an IFR system, ammonium polyphosphate (APP), is highly sensitive to moisture and IFR coating effectiveness decreases quickly. The main objective of this study is to encapsulate APP in a hybrid silica-based membrane by sol-gel process using alkoxysilane tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) precursor. The morphology and structure of APP and microencapsulated ammonium polyphosphate (MAPP) were assessed by scanning electron microscopy and Fourier transforms infrared spectroscopy (FTIR). X-ray photoelectron spectroscopy (XPS) results revealed that APP was well encapsulated inside the polysiloxane shells. The thermal degradation of APP and MAPP was evaluated by thermogravimetric analysis. At 800 °C, the MAPP had higher char residue (70.49 wt%) than APP (3.06 wt%). The hydrophobicity of MAPP increased significantly with the water contact angles up to 98°, in comparison to 20° for APP.


Asunto(s)
Compuestos de Amonio/administración & dosificación , Retardadores de Llama/administración & dosificación , Polifosfatos/administración & dosificación , Dióxido de Silicio/química , Cápsulas/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Transición de Fase , Silanos/química , Temperatura
9.
J Photochem Photobiol B ; 158: 184-91, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26974579

RESUMEN

The photodegradation of white spruce by artificial ageing was studied by several techniques: colourimetry, FTIR-ATR and FT-Raman spectroscopy. Samples were exposed at a xenon lamp for 2000h. Two distinct colour changes were found by colourimetric analysis, yellowing and silvering. These colour modifications indicate the formation of chromophoric structures which supports previous FTIR-ATR experiments. The degradation of lignin to generate the first chromophoric group for yellowing and then the appearance of surface layer cellulose. New carbonyl compounds conjugated with double bond at 1615cm(-1) are probably the second chromophoric group. The crystallinity index was also calculated and showed an increase of cellulose crystallinity by prior degradation of amorphous cellulose. The FT-Raman analysis confirms the wood sensitivity to photodegradation but the most remarkable results is the increase of fluorescence as a function of time. In softwood lignin, the compound able to produce fluorescence is a free rotating 5-5' linkage of one biphenyl structure. At native state these linkages are not free rotating, this phenomenon means the release of 5-5' linkage of lignin structure by cleavage of both α carbon linkages (Norrish type I reaction). These data confirm also the photosensitivity of α and ß carbon in lignin and the resistance of 5-5' linkages.


Asunto(s)
Lignina/química , Rayos Ultravioleta , Madera , Color , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...