Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(9): 1457-1466, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497668

RESUMEN

Increased receptor binding affinity may allow viruses to escape from Ab-mediated inhibition. However, how high-affinity receptor binding affects innate immune escape and T cell function is poorly understood. In this study, we used the lymphocytic choriomeningitis virus (LCMV) murine infection model system to create a mutated LCMV exhibiting higher affinity for the entry receptor α-dystroglycan (LCMV-GPH155Y). We show that high-affinity receptor binding results in increased viral entry, which is associated with type I IFN (IFN-I) resistance, whereas initial innate immune activation was not impaired during high-affinity virus infection in mice. Consequently, IFN-I resistance led to defective antiviral T cell immunity, reduced type II IFN, and prolonged viral replication in this murine model system. Taken together, we show that high-affinity receptor binding of viruses can trigger innate affinity escape including resistance to IFN-I resulting in prolonged viral replication.


Asunto(s)
Coriomeningitis Linfocítica , Internalización del Virus , Ratones , Animales , Ratones Noqueados , Virus de la Coriomeningitis Linfocítica/fisiología , Replicación Viral , Ratones Endogámicos C57BL , Inmunidad Innata
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473734

RESUMEN

Rhinoviral infections cause approximately 50% of upper respiratory tract infections and novel treatment options are urgently required. We tested the effects of 10 µM to 20 µM sphingosine on the infection of cultured and freshly isolated human cells with minor and major group rhinovirus in vitro. We also performed in vivo studies on mice that were treated with an intranasal application of 10 µL of either a 10 µM or a 100 µM sphingosine prior and after infection with rhinovirus strains 1 and 2 and determined the infection of nasal epithelial cells in the presence or absence of sphingosine. Finally, we determined and characterized a direct binding of sphingosine to rhinovirus. Our data show that treating freshly isolated human nasal epithelial cells with sphingosine prevents infections with rhinovirus strains 2 (minor group) and 14 (major group). Nasal infection of mice with rhinovirus 1b and 2 is prevented by the intranasal application of sphingosine before or as long as 8 h after infection with rhinovirus. Nasal application of the same doses of sphingosine exerts no adverse effects on epithelial cells as determined by hemalaun and TUNEL stainings. The solvent, octylglucopyranoside, was without any effect in vitro and in vivo. Mechanistically, we demonstrate that the positively charged lipid sphingosine binds to negatively charged molecules in the virus, which seems to prevent the infection of epithelial cells. These findings indicate that exogenous sphingosine prevents infections with rhinoviruses, a finding that could be therapeutically exploited. In addition, we demonstrated that sphingosine has no obvious adverse effects on the nasal mucosa. Sphingosine prevents rhinoviral infections by a biophysical mode of action, suggesting that sphingosine could serve to prevent many viral infections of airways and epithelial cells in general. Future studies need to determine the molecular mechanisms of how sphingosine prevents rhinoviral infections and whether sphingosine also prevents infections with other viruses inducing respiratory tract infections. Furthermore, our studies do not provide detailed pharmacokinetics that are definitely required before the further development of sphingosine.


Asunto(s)
Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Humanos , Animales , Ratones , Esfingosina , Mucosa Nasal , Células Epiteliales , Rhinovirus
3.
PLoS Pathog ; 19(11): e1011837, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019895

RESUMEN

Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.


Asunto(s)
Coriomeningitis Linfocítica , Malaria Cerebral , Parásitos , Ratones , Animales , Neuropilina-1 , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica , Linfocitos T CD8-positivos/patología , Ratones Endogámicos C57BL
4.
Mol Cancer ; 22(1): 136, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582744

RESUMEN

BACKGROUND: New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS: The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS: 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS: This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Ratones , Animales , Regulación hacia Arriba , Ratones Endogámicos C57BL , Virus de la Coriomeningitis Linfocítica/genética , Melanoma/tratamiento farmacológico
5.
Cell Rep ; 40(7): 111171, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977505

RESUMEN

Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Inmunidad , Ganglios Linfáticos , Neoplasias/patología , Neutrófilos
6.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454869

RESUMEN

Pancreatic cancer is a fatal malignancy with poor prognosis and limited treatment options. Early detection in primary and secondary locations is critical, but fraught with challenges. While digital pathology can assist with the classification of histopathological images, the training of such networks always relies on a ground truth, which is frequently compromised as tissue sections contain several types of tissue entities. Here we show that pancreatic cancer can be detected on hematoxylin and eosin (H&E) sections by convolutional neural networks using deep transfer learning. To improve the ground truth, we describe a preprocessing data clean-up process using two communicators that were generated through existing and new datasets. Specifically, the communicators moved image tiles containing adipose tissue and background to a new data class. Hence, the original dataset exhibited improved labeling and, consequently, a higher ground truth accuracy. Deep transfer learning of a ResNet18 network resulted in a five-class accuracy of about 94% on test data images. The network was validated with independent tissue sections composed of healthy pancreatic tissue, pancreatic ductal adenocarcinoma, and pancreatic cancer lymph node metastases. The screening of different models and hyperparameter fine tuning were performed to optimize the performance with the independent tissue sections. Taken together, we introduce a step of data preprocessing via communicators as a means of improving the ground truth during deep transfer learning and hyperparameter tuning to identify pancreatic ductal adenocarcinoma primary tumors and metastases in histological tissue sections.

7.
Hepatol Commun ; 6(7): 1620-1633, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35166071

RESUMEN

Major histocompatibility complex I (MHC-I) molecules present epitopes on the cellular surface of antigen-presenting cells to prime cytotoxic clusters of differentiation 8 (CD8)+ T cells (CTLs), which then identify and eliminate other cells such as virus-infected cells bearing the antigen. Human hepatitis virus cohort studies have previously identified MHC-I molecules as promising predictors of viral clearance. However, the underlying functional significance of these predictions is not fully understood. Here, we show that expression of single MHC-I isomers promotes virus-induced liver immunopathology. Specifically, using the lymphocytic choriomeningitis virus (LCMV) model system, we found MHC-I proteins to be highly up-regulated during infection. Deletion of one of the two MHC-I isomers histocompatibility antigen 2 (H2)-Db or H2-Kb in C57Bl/6 mice resulted in CTL activation recognizing the remaining MHC-I with LCMV epitopes in increased paucity. This increased CTL response resulted in hepatocyte death, increased caspase activation, and severe metabolic changes in liver tissue following infection with LCMV. Moreover, depletion of CTLs abolished LCMV-induced pathology in these mice with resulting viral persistence. In turn, natural killer (NK) cell depletion further increased antiviral CTL immunity and clearance of LCMV even in the presence of a single MHC-I isomer. Conclusion: Our results suggest that uniform MHC-I molecule expression promotes enhanced CTL immunity during viral infection and contributes to increased CTL-mediated liver cell damage that was alleviated by CD8 or NK cell depletion.


Asunto(s)
Coriomeningitis Linfocítica , Animales , Epítopos , Antígenos de Histocompatibilidad , Humanos , Hígado , Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/genética , Complejo Mayor de Histocompatibilidad , Ratones
8.
Nat Commun ; 13(1): 156, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013174

RESUMEN

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias Pancreáticas/genética , Progranulinas/genética , Escape del Tumor/genética , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Animales , Anticuerpos Neutralizantes/farmacología , Antígenos Virales/genética , Antígenos Virales/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Citotoxicidad Inmunológica , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Progranulinas/antagonistas & inhibidores , Progranulinas/inmunología , Proteolisis , Análisis de Supervivencia , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Res ; 82(2): 264-277, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34810198

RESUMEN

Emerging evidence indicates B-cell activating factor (BAFF, Tnfsf13b) to be an important cytokine for antitumor immunity. In this study, we generated a BAFF-overexpressing B16.F10 melanoma cell model and found that BAFF-expressing tumors grow more slowly in vivo than control tumors. The tumor microenvironment (TME) of BAFF-overexpressing tumors had decreased myeloid infiltrates with lower PD-L1 expression. Monocyte depletion and anti-PD-L1 antibody treatment confirmed the functional importance of monocytes for the phenotype of BAFF-mediated tumor growth delay. RNA sequencing analysis confirmed that monocytes isolated from BAFF-overexpressing tumors were characterized by a less exhaustive phenotype and were enriched for in genes involved in activating adaptive immune responses and NF-κB signaling. Evaluation of patients with late-stage metastatic melanoma treated with inhibitors of the PD-1/PD-L1 axis demonstrated a stratification of patients with high and low BAFF plasma levels. Patients with high BAFF levels experienced lower responses to anti-PD-1 immunotherapies. In summary, these results show that BAFF, through its effect on tumor-infiltrating monocytes, not only impacts primary tumor growth but can serve as a biomarker to predict response to anti-PD-1 immunotherapy in advanced disease. SIGNIFICANCE: The BAFF cytokine regulates monocytes in the melanoma microenvironment to suppress tumor growth, highlighting the importance of BAFF in antitumor immunity.


Asunto(s)
Factor Activador de Células B/metabolismo , Tolerancia Inmunológica/genética , Melanoma Experimental/inmunología , Monocitos/inmunología , Neoplasias Cutáneas/inmunología , Microambiente Tumoral/inmunología , Inmunidad Adaptativa , Animales , Factor Activador de Células B/genética , Receptor del Factor Activador de Células B/genética , Receptor del Factor Activador de Células B/metabolismo , Células HEK293 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transfección , Microambiente Tumoral/genética
10.
Cancer Res ; 81(21): 5540-5554, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518212

RESUMEN

Despite impressive advances in melanoma-directed immunotherapies, resistance is common and many patients still succumb to metastatic disease. In this context, harnessing natural killer (NK) cells, which have thus far been sidelined in the development of melanoma immunotherapy, could provide therapeutic benefits for cancer treatment. To identify molecular determinants of NK cell-mediated melanoma killing (NKmK), we quantified NK-cell cytotoxicity against a panel of genetically diverse melanoma cell lines and observed highly heterogeneous susceptibility. Melanoma protein microarrays revealed a correlation between NKmK and the abundance and activity of a subset of proteins, including several metabolic factors. Oxidative phoshorylation, measured by oxygen consumption rate, negatively correlated with melanoma cell sensitivity toward NKmK, and proteins involved in mitochondrial metabolism and epithelial-mesenchymal transition were confirmed to regulate NKmK. Two- and three-dimensional killing assays and melanoma xenografts established that the PI3K/AKT/mTOR signaling axis controls NKmK via regulation of NK cell-relevant surface proteins. A "protein-killing-signature" based on the protein analysis predicted NKmK of additional melanoma cell lines and the response of patients with melanoma to anti-PD-1 checkpoint therapy. Collectively, these findings identify novel NK cell-related prognostic biomarkers and may contribute to improved and personalized melanoma-directed immunotherapies. SIGNIFICANCE: NK-cell cytotoxicity assays and protein microarrays reveal novel biomarkers of NK cell-mediated melanoma killing and enable development of signatures to predict melanoma patient responsiveness to immunotherapies.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Melanoma/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Citotoxicidad Inmunológica , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Análisis por Matrices de Proteínas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Biol Chem ; 402(9): 1115-1128, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34192832

RESUMEN

A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.


Asunto(s)
Hígado , Proteína ADAM17 , Animales , Humanos
12.
Viruses ; 13(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918368

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 and is responsible for the ongoing pandemic. Screening of potential antiviral drugs against SARS-CoV-2 depend on in vitro experiments, which are based on the quantification of the virus titer. Here, we used virus-induced cytopathic effects (CPE) in brightfield microscopy of SARS-CoV-2-infected monolayers to quantify the virus titer. Images were classified using deep transfer learning (DTL) that fine-tune the last layers of a pre-trained Resnet18 (ImageNet). To exclude toxic concentrations of potential drugs, the network was expanded to include a toxic score (TOX) that detected cell death (CPETOXnet). With this analytic tool, the inhibitory effects of chloroquine, hydroxychloroquine, remdesivir, and emetine were validated. Taken together we developed a simple method and provided open access implementation to quantify SARS-CoV-2 titers and drug toxicity in experimental settings, which may be adaptable to assays with other viruses. The quantification of virus titers from brightfield images could accelerate the experimental approach for antiviral testing.


Asunto(s)
Antivirales/farmacología , Aprendizaje Profundo , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Aprendizaje Automático , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Animales , COVID-19 , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus , Fosfoproteínas , Células Vero , Carga Viral/efectos de los fármacos
13.
Commun Biol ; 4(1): 508, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927339

RESUMEN

Immune evasion of pathogens can modify the course of infection and impact viral persistence and pathology. Here, using different strains of the lymphocytic choriomeningitis virus (LCMV) model system, we show that slower propagation results in limited type I interferon (IFN-I) production and viral persistence. Specifically, cells infected with LCMV-Docile exhibited reduced viral replication when compared to LCMV-WE and as a consequence, infection with LCMV-Docile resulted in reduced activation of bone marrow derived dendritic cells (BMDCs) and IFN-I production in vitro in comparison with LCMV-WE. In vivo, we observed a reduction of IFN-I, T cell exhaustion and viral persistence following infection of LCMV-Docile but not LCMV-WE. Mechanistically, block of intracellular protein transport uncovered reduced propagation of LCMV-Docile when compared to LCMV-WE. This reduced propagation was critical in blunting the activation of the innate and adaptive immune system. When mice were simultaneously infected with LCMV-Docile and LCMV-WE, immune function was restored and IFN-I production, T cell effector functions as well as viral loads were similar to that of mice infected with LCMV-WE alone. Taken together, this study suggests that reduced viral propagation can result in immune evasion and viral persistence.


Asunto(s)
Infecciones por Arenaviridae/virología , Células Dendríticas/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Receptor de Interferón alfa y beta/fisiología , Linfocitos T/virología , Replicación Viral , Animales , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo
14.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33163980

RESUMEN

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Asunto(s)
Células Epiteliales/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Amitriptilina/farmacología , Animales , Antidepresivos/farmacología , Ceramidas/antagonistas & inhibidores , Ceramidas/metabolismo , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Ceramidasa Neutra/farmacología , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética
15.
Front Immunol ; 11: 1849, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973762

RESUMEN

Immune activation within the tumor microenvironment is one promising approach to induce tumor regression. Certain viruses including oncolytic viruses such as the herpes simplex virus (HSV) and non-oncolytic viruses such as the lymphocytic choriomeningitis virus (LCMV) are potent tools to induce tumor-specific immune activation. However, not all tumor types respond to viro- and/or immunotherapy and mechanisms accounting for such differences remain to be defined. In our current investigation, we used the non-cytopathic LCMV in different human melanoma models and found that melanoma cell lines produced high levels of CCL5 in response to immunotherapy. In vivo, robust CCL5 production in LCMV infected Ma-Mel-86a tumor bearing mice led to recruitment of NK cells and fast tumor regression. Lack of NK cells or CCL5 abolished the anti-tumoral effects of immunotherapy. In conclusion, we identified CCL5 and NK cell-mediated cytotoxicity as new factors influencing melanoma regression during virotherapy.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Quimiocina CCL5/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Melanoma/inmunología , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Virus Oncolíticos/inmunología
16.
Antibodies (Basel) ; 9(3)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882841

RESUMEN

The integrin associated protein (CD47) is a widely and moderately expressed glycoprotein in all healthy cells. Cancer cells are known to induce increased CD47 expression. Similar to cancer cells, all immune cells can upregulate their CD47 surface expression during infection. The CD47-SIRPa interaction induces an inhibitory effect on macrophages and dendritic cells (dendritic cells) while CD47-thrombospondin-signaling inhibits T cells. Therefore, the disruption of the CD47 interaction can mediate several biologic functions. Upon the blockade and knockout of CD47 reveals an immunosuppressive effect of CD47 during LCMV, influenza virus, HIV-1, mycobacterium tuberculosis, plasmodium and other bacterial pneumonia infections. In our recent study we shows that the blockade of CD47 using the anti-CD47 antibody increases the activation and effector function of macrophages, dendritic cells and T cells during viral infection. By enhancing both innate and adaptive immunity, CD47 blocking antibody promotes antiviral effect. Due to its broad mode of action, the immune-stimulatory effect derived from this antibody could be applicable in nonresolving and (re)emerging infections. The anti-CD47 antibody is currently under clinical trial for the treatment of cancer and could also have amenable therapeutic potential against infectious diseases. This review highlights the immunotherapeutic targeted role of CD47 in the infectious disease realm.

18.
Pflugers Arch ; 472(9): 1401-1406, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32529300

RESUMEN

Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Linfocitos/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Humanos , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteínas de Transporte de Sodio-Glucosa/genética
19.
Gut Microbes ; 11(6): 1790-1805, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32521208

RESUMEN

The incidence of gastrointestinal infections continues to increase, and infectious colitis contributes significantly to morbidity and mortality worldwide. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been discovered to be strongly involved in the intestinal homeostasis. However, whether intestinal CEACAM1 expression has an impact on the control of infectious colitis remains elusive. Citrobacter rodentium (C. rodentium) is a gram-negative enteric pathogen that induces colonic inflammation in mice, with a critical role for CD4+ T cell but not CD8+ T cell immunity to primary infection. Here, we show that Ceacam1-/- mice are much more susceptible to C. rodentium infection than wildtype mice, which is mediated by a defect in the intestinal barrier and, surprisingly, by a dysregulated CD8+ T cell but not CD4+ T cell response in the colon. CEACAM1 expression is essential for the control of CD8+ T cell immunity, as CEACAM1 deficiency during C. rodentium infection inhibits CD8+ T cell exhaustion. We conclude that CEACAM1 is an important regulator of CD8+ T cell function in the colon, and blocking CEACAM1 signaling to activate CD8+ T cells may have unforeseen side effects.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno Carcinoembrionario/inmunología , Citrobacter rodentium/fisiología , Colitis/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Animales , Linfocitos T CD4-Positivos/inmunología , Antígeno Carcinoembrionario/genética , Colitis/genética , Colitis/microbiología , Colitis/patología , Colon/inmunología , Colon/microbiología , Colon/patología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
mBio ; 11(3)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576678

RESUMEN

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Asunto(s)
Betacoronavirus/inmunología , Antígeno CD47/metabolismo , Inmunomodulación/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Células A549 , Inmunidad Adaptativa/inmunología , Animales , Antígeno CD47/genética , Línea Celular Tumoral , Citocinas/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología , SARS-CoV-2 , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA