Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Mol Biol Rev ; 87(4): e0003622, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38047635

RESUMEN

SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.


Asunto(s)
Aminoglicósidos , Antibacterianos , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas , Bacterias , Farmacorresistencia Bacteriana Múltiple
2.
Microbiol Spectr ; 11(6): e0173023, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37861314

RESUMEN

IMPORTANCE: The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae. We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain's membrane becomes permeable to external agents such as the antibiotic vancomycin.


Asunto(s)
Proteínas de Escherichia coli , Vibrio cholerae , Antibacterianos/farmacología , Antibacterianos/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Aminoglicósidos/farmacología , Aminoglicósidos/metabolismo , Adenosina Trifosfatasas/metabolismo
3.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37502966

RESUMEN

The possible active entry of aminoglycosides in bacterial cells has been debated since the development of this antibiotic family. Here we report the identification of their active transport mechanism in Vibrio species. We combined genome-wide transcriptional analysis and fitness screens to identify alterations driven by treatment of V. cholerae with sub-minimum inhibitory concentrations (sub-MIC) of the aminoglycoside tobramycin. RNA-seq data showed downregulation of the small non-coding RNA ncRNA586 during such treatment, while Tn-seq revealed that inactivation of this sRNA was associated with improved fitness in the presence of tobramycin. This sRNA is located near sugar transport genes and previous work on a homologous region in Vibrio tasmaniensis suggested that this sRNA stabilizes gene transcripts for carbohydrate transport and utilization, as well as phage receptors. The role for ncRNA586, hereafter named ctrR, in the transport of both carbohydrates and aminoglycosides, was further investigated. Flow cytometry on cells treated with a fluorescent aminoglycoside confirmed the role of ctrR and of carbohydrate transporters in differential aminoglycoside entry. Despite sequence diversity, ctrR showed functional conservation across the Vibrionales. This system in directly modulated by carbon sources, suggesting regulation by carbon catabolite repression, a widely conserved mechanism in Gram-negative bacteria, priming future research on aminoglycoside uptake by sugar transporters in other bacterial species.

4.
iScience ; 24(10): 103128, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34611612

RESUMEN

Indole is a molecule proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, although its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, confirmed by sucrose gradient analysis. We propose that, under stress conditions, RaiA-bound inactive 70S ribosomes are stored as "sleeping ribosomes", and are rapidly reactivated upon stress relief. Our results point to an active process of persister formation through ribosome protection during translational stress (e.g., aminoglycoside treatment) and reactivation upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA