Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Invest ; 100(3): 378-386, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31527830

RESUMEN

Monocyte and adhesion infiltration into the arterial subendothelium are initial steps in hypertension development. The endothelial intercellular adhesion molecule-1 (ICAM-1) has been implicated in the recruitment and adhesion of leukocytes in several cardiac diseases. However, the role of ICAM-1 in angiotensin II (Ang II)-induced hypertension development remains unknown. Hypertension was induced by administering an infusion of Ang II (1000 ng/kg/min) to wild-type (WT) mice treated with an IgG control or ICAM-1 neutralizing antibody (1 and 2 mg/mouse/day, respectively). Blood pressure was determined using the tail-cuff system. Vascular remodeling was assessed by performing a histological examination. Inflammation and reactive oxygen species (ROS) levels were determined by using immunostaining. Vascular dysfunction was assessed by aortic ring assay. The expression of fibrotic markers, cytokines and NOX was evaluated by quantitative real-time PCR analysis. Our results demonstrate that Ang II infusion markedly increased the ICAM-1 level in the aorta. Blocking ICAM-1 with a neutralizing antibody significantly attenuated Ang II-induced arterial hypertension, vascular hypertrophy, fibrosis, macrophage infiltration, and ROS production and improved vascular relaxation. In conclusion, ICAM-1-mediated monocyte adhesion and migration play a critical role in Ang II-induced arterial hypertension and vascular dysfunction. ICAM-1 inhibitors may represent a new therapeutic strategy for the treatment of this disease.


Asunto(s)
Angiotensina II/metabolismo , Endotelio Vascular/fisiopatología , Hipertensión/prevención & control , Molécula 1 de Adhesión Intercelular , Animales , Aorta/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión/metabolismo , Molécula 1 de Adhesión Intercelular/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Am J Physiol Heart Circ Physiol ; 317(6): H1301-H1311, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31729904

RESUMEN

Intercellular adhesion molecule-1 (ICAM-1) is a member of an immunoglobulin-like superfamily of adhesion molecules that mediate leukocyte adhesion to vascular endothelium and are involved in several cardiovascular diseases, including ischemia-reperfusion injury, myocardial infarction, and atherosclerosis. However, the role of ICAM-1 in angiotensin II (ANG II)-induced cardiac remodeling in mice remains unclear. Wild-type mice were administered an IgG control or ICAM-1 neutralizing antibody (1 and 2 mg/mouse, respectively) and ANG II (1,000 ng·kg-1·min-1) for up to 14 days. Cardiac contractile function and structure were detected by echocardiography. Hypertrophy, fibrosis, and inflammation were assessed by histological examination. The infiltration of lymphocyte function-associated antigen-1 (LFA-1+) monocytes/macrophages was assessed by immunostaining. The mRNA expression of genes was evaluated by quantitative RT-PCR analysis. Protein levels were tested by immunoblotting. We found that ICAM-1 expression in ANG II-infused hearts and ICAM-1 levels in serum from human patients with heart failure were significantly increased. Moreover, ANG II infusion markedly enhanced ANG II-induced hypertension, caused cardiac contractile dysfunction, and promoted cardiac hypertrophy, fibrosis, and LFA-1+ macrophage infiltration. Conversely, blockage of ICAM-1 with a neutralizing antibody dose-dependently attenuated these effects. Moreover, our in vitro data further demonstrated that blocking ICAM-1 inhibited ANG II-induced LFA-1+ macrophage adhesion to endothelial cells and migration. In conclusion, these results provide novel evidence that blocking ICAM-1 exerts a protective effect in ANG II-induced cardiac remodeling at least in part through the modulation of adhesion and infiltration of LFA-1+ macrophages in the heart. Inhibition of ICAM-1 may represent a new therapeutic approach for hypertrophic heart diseases.NEW & NOTEWORTHY Leukocyte adhesion to vascular endothelium is a critical step in cardiovascular diseases. ICAM-1 is a member of immunoglobulin-like superfamily of adhesion molecules that binds LFA-1 to mediate leukocytes adhesion and migration. However, the significance of ICAM-1 in ANG II-induced cardiac remodeling remains unclear. This study reveals that blocking of ICAM-1 prevents ANG II-induced cardiac remodeling via modulating adhesion and migration of LFA-1+ monocytes, may serve as a novel therapeutic target for hypertensive cardiac diseases.


Asunto(s)
Adhesión Celular , Endotelio Vascular/metabolismo , Insuficiencia Cardíaca/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/fisiología , Angiotensina II/toxicidad , Animales , Anticuerpos Neutralizantes/inmunología , Endotelio Vascular/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/sangre , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Contracción Miocárdica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...