Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 247: 112771, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647818

RESUMEN

The therapeutic properties of 5-aminolevulinic acid (5-ALA) have been extensively studied for cancer detection and treatment using photodynamic therapy (PDT). When administered externally, 5-ALA is converted to protoporphyrin IX (PpIX) in cancer cells, which generates reactive oxygen species (ROS) upon exposure to light. This process enables targeted cell death induction and cancer detection. Given the highly conserved nature of heme biosynthesis over billions of years, we hypothesized that natural mechanisms might exist to prevent excessive accumulation of PpIX or heme resulting from 5-ALA overload. Therefore, we anticipated alterations in protein expression profiles upon exogenous administration of 5-ALA. To understand cellular responses to 5-ALA, we investigated protein expression changes and identified OR1B1 as a promising target in bladder, prostate, lung, and cervical cancer cells. OR1B1 expression was observed only with 5-ALA and ferrous chloride, highlighting the central role of heme in this discovery. Immunofluorescence and electron microscopy confirmed OR1B1's sub-cellular localization. These findings suggest that 5-ALA transformation in cancer cells and OR1B1 expression have potential for enhancing cancer detection and developing alternative treatments, including immunotherapy. This approach overcomes the limitations of PDT and opens new avenues for effective and targeted cancer interventions.


Asunto(s)
Neoplasias , Fotoquimioterapia , Masculino , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Línea Celular Tumoral , Protoporfirinas/metabolismo , Hemo , Neoplasias/tratamiento farmacológico
2.
J Photochem Photobiol B ; 244: 112717, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37146545

RESUMEN

Aminolevulinic acid (ALA) and its derivatives have been used in the diagnosis of several diseases through topical, intravesical, and oral administration. However, their intravenous use for the theranostics of cancers has not raised interest despite its potential advantages. In this study, we compared the efficacy of ALA, its hexyl ester ALA-Hex, and our new derivative PSI-ALA-Hex to induce a fluorescent protoporphyrin IX (PpIX) overproduction in breast cancers. First, we tested the drugs on four subtypes of breast cancer spheroids in vitro. Our results demonstrated the capacity of ALA-Hex and PSI-ALA-Hex to produce PpIX in all breast spheroids, although ALA struggled in half of the models. We applied the chick embryo in vivo model to investigate the intravenous administration route of ALA and PSI-ALA-Hex, ALA-Hex being toxic. We engrafted breast cancer nodules having various hormonal profiles onto the chorioallantoic membrane of the eggs. They were all detected by fluorescence imaging with mild efficacy using PSI-ALA-Hex, which displayed a maximum selectivity of 2.2 to 2.9, whereas ALA showed a higher selectivity from 3.2 to 5.1 at 300 µmol/kg. PSI-ALA-Hex was less appropriate for the diagnosis of breast cancer by intravenous administration. We show for the first time, to the best of our knowledge, the photodetection and imaging of a wide range of breast tumors in vivo upon intravenous treatment with ALA.


Asunto(s)
Neoplasias , Fotoquimioterapia , Femenino , Embrión de Pollo , Animales , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Membrana Corioalantoides , Pollos , Protoporfirinas , Neoplasias/tratamiento farmacológico
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499224

RESUMEN

Today, most research on treating cancers targets one single cancer, often because of the very specific operation principle of the therapy. For instance, immunotherapies require the expression of a particular antigen, which might not be expressed in all cancers or in all patients. What about metastases? Combination therapies are promising but require treatment personalization and are an expensive approach that many health systems are not willing to pay for. Resection of cancerous tissues may be conducted beforehand. However, the precise location and removal of tumors are in most cases, hurdles that require margins to prevent recurrence. Herein, we further demonstrate the wide application of aminolevulinate-based photodynamic diagnosis and therapy toward breast cancers. By selecting four breast cancer cell lines that represent the main breast tumor subtypes, we investigated their ability to accumulate the fluorescent protoporphyrin IX upon treatment with the marketed 5-aminolevulinic acid hexyl ester (ALA-Hex) or our new and more stable derivative PSI-ALA-Hex. We found that all cell lines were able to accumulate PpIX under a few hours independent of their hormonal status with both treatments. Additionally, this accumulation was less dose-dependent with PSI-ALA-Hex and induced similar or higher fluorescence intensity than ALA-Hex in three out of four cell lines. The toxicity of the two molecules was not different up to 0.33 mM. However, PSI-ALA-Hex was more toxic at 1 mM, even though lower concentrations of PSI-ALA-Hex led to the same PpIX accumulation level. Additional illumination with blue light to induce cell death by generating reactive oxygen species was also considered. The treatments led to a dramatic death of the BT-474 cells under all conditions. In SK-BR-3 and MCF-7, ALA-Hex was also very efficient at all concentrations. However, increasing doses of PSI-ALA-Hex (0.33 and 1 mM) surprisingly led to a higher viability rate. In contrast, the triple-negative breast cancer cells MDA-MB-231 showed a higher death induction with higher concentrations of ALA-Hex or PSI-ALA-Hex. Derivatives of ALA seem promising as fluorescence-guided resection tools and may enable subsequent completion of cancer cell destruction by blue light irradiation.


Asunto(s)
Neoplasias de la Mama , Fotoquimioterapia , Humanos , Femenino , Ácido Aminolevulínico/metabolismo , Fármacos Fotosensibilizantes/farmacología , Protoporfirinas/metabolismo , Células MCF-7 , Línea Celular Tumoral
4.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887311

RESUMEN

Mitochondria are essential organelles of mammalian cells, often emphasized for their function in energy production, iron metabolism and apoptosis as well as heme synthesis. The heme is an iron-loaded porphyrin behaving as a prosthetic group by its interactions with a wide variety of proteins. These complexes are termed hemoproteins and are usually vital to the whole cell comportment, such as the proteins hemoglobin, myoglobin or cytochromes, but also enzymes such as catalase and peroxidases. The building block of porphyrins is the 5-aminolevulinic acid, whose exogenous administration is able to stimulate the entire heme biosynthesis route. In neoplastic cells, this methodology repeatedly demonstrated an accumulation of the ultimate heme precursor, the fluorescent protoporphyrin IX photosensitizer, rather than in healthy tissues. While manifold players have been proposed, numerous discrepancies between research studies still dispute the mechanisms underlying this selective phenomenon that yet requires intensive investigations. In particular, we wonder what are the respective involvements of enzymes and transporters in protoporphyrin IX accretion. Is this mainly due to a boost in protoporphyrin IX anabolism along with a drop of its catabolism, or are its transporters deregulated? Additionally, can we truly expect to find a universal model to explain this selectivity? In this report, we aim to provide our peers with an overview of the currently known mitochondrial heme metabolism and approaches that could explain, at least partly, the mechanism of protoporphyrin IX selectivity towards cancer cells.


Asunto(s)
Neoplasias , Porfirinas , Ácido Aminolevulínico/metabolismo , Animales , Hemo/metabolismo , Hierro , Mamíferos/metabolismo , Porfirinas/metabolismo , Protoporfirinas/metabolismo
5.
J Photochem Photobiol B ; 233: 112484, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35671620

RESUMEN

5-ALA-mediated photodynamic therapy (PDT) has been developed around the heme biosynthesis physiological pathway. It is based on the external supplementation of 5 aminolevulinic acid (5-ALA), increasing the activity of the heme pathway and leading to a significant protoporphyrin IX (PpIX) accumulation. Interestingly, this metbolite accumulation is predominant in cancer cells, induced by a highly active metabolism, therefore limiting off-target side effects and increasing therapy specificity. Nevertheless, the intrinsic mechanism responsible of PpIX accumulation on cells following PDT is still unknown, limiting clinical therapy translation. In order to further understand the mechanisms behind 5-ALA-induced PDT, in this study we aimed to evaluate the proteome changes reported on the physiological heme pathway, in response to an external 5-ALA supplementation. We studied two different scenarios following 5-ALA treatment, 5-ALA accumulation (5-ALA metabolization into the heme pathway blocked with inhibitors) and accumulation of PpIX (normal heme pathway with 5-ALA supplementation). Therefore, we were able to characterize enzymatic changes and to describe bottlenecks in the pathway. Following mass spectrometry analysis, we reported significant differences between 5-ALA and PpIX effects on heme biosynthesis and regulation of degradation. 5-ALA accumulation significantly decreased porphobilinogen deaminase (HMBS) expression, while phorphyrins accumulation (PpIX) upregulated heme synthesis, specifically HMBS and uroporphyrinogen decarboxylase (UROD), and enhanced the enzymatic level of the heme degradation pathway, including Heme oxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA). Interestingly, porphyrins induced a significant downregulation effect on oxygen-dependent coproporphyrinogen-III oxidase (CPOX). In conclusion, in this study we demonstrated that porphyrins play the most relevant role in heme biosynthesis modulation, while 5-ALA alone (PDT substrate) is not responsible of the main changes observed in this pathway during PDT treatment. Understanding heme enzyme modulation would help to design a more rational approach for patient treatment in the clinic. AIM: Effect of 5-ALA and porphyrins on the different Heme biosynthesis and degradation enzymes.


Asunto(s)
Ácido Aminolevulínico , Fotoquimioterapia , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Línea Celular Tumoral , Hemo/metabolismo , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Proteómica , Protoporfirinas/metabolismo , Protoporfirinas/farmacología
6.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35631388

RESUMEN

Cathepsin B is a lysosomal cysteine protease that plays an important role in cancer, atherosclerosis, and other inflammatory diseases. The suppression of cathepsin B can inhibit tumor growth. The overexpression of cathepsin B can be used for the imaging and photodynamic therapy (PDT) of cancer. PDT targeting of cathepsin B may have a significant potential for selective destruction of cells with high cathepsin B activity. We synthesized a cathepsin B-cleavable polymeric photosensitizer prodrug (CTSB-PPP) that releases pheophorbide a (Pha), an efficient photosensitizer upon activation with cathepsin B. We determined the concentration dependant uptake in vitro, the safety, and subsequent PDT-induced toxicity of CTSB-PPP, and ROS production. CTSB-PPP was cleaved in bone marrow cells (BMCs), which express a high cathepsin B level. We showed that the intracellular fluorescence of Pha increased with increasing doses (3-48 µM) and exerted significant dark toxicity above 12 µM, as assessed by MTT assay. However, 6 µM showed no toxicity on cell viability and ex vivo vascular function. Time-dependent studies revealed that cellular accumulation of CTSB-PPP (6 µM) peaked at 60 min of treatment. PDT (light dose: 0-100 J/cm2, fluence rate: 100 mW/cm2) was applied after CTSB-PPP treatment (6 µM for 60 min) using a special frontal light diffuser coupled to a diode laser (671 nm). PDT resulted in a light dose-dependent reduction in the viability of BMCs and was associated with an increased intracellular ROS generation. Fluorescence and ROS generation was significantly reduced when the BMCs were pre-treated with E64-d, a cysteine protease inhibitor. In conclusion, we provide evidence that CTSB-PPP showed no dark toxicity at low concentrations. This probe could be utilized as a potential imaging agent to identify cells or tissues with cathepsin B activity. CTSB-PPP-based PDT results in effective cytotoxicity and thus, holds great promise as a therapeutic agent for achieving the selective destruction of cells with high cathepsin B activity.

7.
Molecules ; 26(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34684822

RESUMEN

Cyclopeptidic photosensitizer prodrugs (cPPPs) are compounds designed to specifically target overexpressed hydrolases such as serine proteases, resulting in their specific activation in close proximity to tumor cells. In this study, we explored a series of conjugates that can be selectively activated by the urokinase plasminogen activator (uPA). They differ from each other by their pheophorbide a (Pha) loading, their number of PEG chains and the eventual presence of black hole quenchers (BHQ3). The involvement of a peptidic linker between the drugs and the cyclopeptidic carrier allows specific cleavage by uPA. Restoration of the photophysical activity was observed in vitro on A549 lung and MCF7 breast cancer cells that exhibited an increase in red fluorescence emission up to 5.1-fold and 7.8-fold, respectively for uPA-cPPQ2+2/5. While these cPPP conjugates do not show dark toxicity, they revealed their phototoxic potential in both cell lines at 5 µM of Phaeq and a blue light fluence of 12.7 J/cm2 that resulted in complete cell death with almost all conjugates. This suggests, in addition to the promising use for cancer diagnosis, a use as a PDT agent. Intravenous injection of tetrasubstituted conjugates in fertilized hen eggs bearing a lung cancer nodule (A549) showed that a double PEGylation was favorable for the selective accumulation of the unquenched Pha moieties in the tumor nodules. Indeed, the diPEGylated uPA-cPPP4/52 induced a 5.2-fold increase in fluorescence, while the monoPEGylated uPA-cPPP4/5 or uPA-cPPQ2+2/5 led to a 0.4-fold increase only.


Asunto(s)
Membrana Corioalantoides/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Profármacos/metabolismo , Células A549 , Animales , Transporte Biológico Activo , Embrión de Pollo , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Técnicas In Vitro , Células MCF-7 , Modelos Biológicos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacocinética , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacocinética , Profármacos/química , Profármacos/farmacocinética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009762

RESUMEN

In order to locate historical traces, drone-based Laserscanning has become increasingly popular in archaeological prospection and historical conflict landscapes research. The low resolution of aircraft-based Laserscanning is not suitable for small-scale detailed analysis so that high-resolution UAV-based LiDAR data are required. However, many of the existing studies lack a systematic approach to UAV-LiDAR data acquisition and point cloud filtering. We use this methodology to detect anthropogenic terrain anomalies. In this study, we systematically investigated different influencing factors on UAV-LiDAR data acquisition. The flight parameters speed and altitude above ground were systematically varied. In addition, different vegetation cover and seasonal acquisition times were compared, and we evaluated three different types of filter algorithms to separate ground from non-ground. It could be seen from our experiments that for the detection of subsurface anomalies in treeless open terrain, higher flight speeds like 6 m/s were feasible. Regarding the flight altitude, we recommend an altitude of 50-75 m above ground. At higher flight altitudes of 100-120 m above ground, there is the risk that terrain characteristics smaller than 50 cm will be missed. Areas covered with deciduous forest should only be surveyed during leaf-off season. In the presence of low-level vegetation (small bushes and shrubs with a height of up to 2 m), it turned out that the morphological filter was the most suitable. In tree-covered areas with total absence of near ground vegetation, however, the choice of filter algorithm plays only a subordinate role, especially during winter where the resulting ground point densities have a percentage deviation of less than 6% from each other.


Asunto(s)
Tecnología de Sensores Remotos , Dispositivos Aéreos No Tripulados , Aeronaves , Altitud , Bosques
9.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962018

RESUMEN

Cyclopeptidic chemotherapeutic prodrugs (cPCPs) are macromolecular protease-sensitive doxorubicin (DOX) prodrugs synthesized from a cyclodecapeptidic scaffold, termed Regioselectively Addressable Functionalized Template (RAFT). In order to increase the chemotherapeutic potential of DOX and limit its toxicity, we used a Cathepsin B (Cat B)-sensitive prodrug concept for its targeted release since this enzyme is frequently overexpressed in cancer cells. Copper-free "click" chemistry was used to synthesize cPCPs containing up to four DOX moieties tethered to the upper face of the scaffold through a Cat B-cleavable peptidic linker (GAGRRAAG). On the lower part, PEG 5, 10 and 20 kDa and a fifth peptidyl DOX moiety were grafted in order to improve the solubility, bioavailability and pharmacokinetic profiles of the compound. In vitro results on HT1080 human fibrosarcoma cells showed that cPCPs display a delayed action that consists of a cell cycle arrest in the G2 phase comparable to DOX alone, and increased cell membrane permeability.


Asunto(s)
Catepsina B/metabolismo , Péptidos Cíclicos/química , Profármacos/química , Secuencia de Aminoácidos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Química Clic , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Péptidos Cíclicos/metabolismo , Polietilenglicoles/química , Profármacos/metabolismo , Profármacos/farmacología , Solubilidad
10.
Photochem Photobiol ; 96(3): 570-580, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32104926

RESUMEN

Active targeting strategies are currently being extensively investigated in order to enhance the selectivity of photodynamic therapy. The aim of the present research was to evaluate whether the external decoration of nanopolymeric carriers with targeting peptides could add more value to a photosensitizer formulation and increase antitumor therapeutic efficacy and selectivity. To this end, we assessed PLGA-PLA-PEG nanoparticles (NPs) covalently attached to a hydrophilic photosensitizer 5-[4-azidophenyl]-10,15,20-tri-(N-methyl-4-pyridinium)porphyrinato zinc (II) trichloride (ZnTriMPyP) and also to c(RGDfK) peptides, in order to target αv ß3 integrin-expressing cells. In vitro phototoxicity investigations showed that the ZnTriMPyP-PLGA-PLA-PEG-c(RGDfK) nanosystem is effective at submicromolar concentrations, is devoid of dark toxicity, successfully targets αv ß3 integrin-expressing cells and is 10-fold more potent than related nanosystems where the PS is occluded instead of covalently bound.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Neoplasias/tratamiento farmacológico , Oligopéptidos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Polímeros/química , Línea Celular Tumoral , Humanos , Integrinas/efectos de los fármacos , Cinética , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
11.
Photochem Photobiol Sci ; 18(11): 2815, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642833

RESUMEN

Correction for 'Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part II - co-loading of pheophorbide A and black hole quencher' by Jordan Bouilloux et al., Photochem. Photobiol. Sci., 2018, 17, 1739-1748.

12.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590223

RESUMEN

Photodynamic therapy (PDT) and photodiagnosis (PD) are essential approaches in the field of biophotonics. Ideally, both modalities require the selective sensitization of the targeted disease in order to avoid undesired phenomena such as the destruction of healthy tissue, skin photosensitization, or mistaken diagnosis. To a large extent, the occurrence of these incidents can be attributed to "background" accumulation in non-target tissue. Therefore, an ideal photoactive compound should be optically silent in the absence of disease, but bright in its presence. Such requirements can be fulfilled using innovative prodrug strategies targeting disease-associated alterations. Here we will summarize the elaboration, characterization, and evaluation of approaches using polymeric photosensitizer prodrugs, nanoparticles, micelles, and porphysomes. Finally, we will discuss the use of 5-aminolevulinc acid and its derivatives that are selectively transformed in neoplastic cells into photoactive protoporphyrin IX.

13.
Photochem Photobiol Sci ; 18(11): 2814, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642463

RESUMEN

Correction for 'Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part I - self-quenched prodrugs' by Jordan Bouilloux et al., Photochem. Photobiol. Sci., 2018, 17, 1728-1738.

14.
Nanomedicine ; 15(1): 243-251, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304701

RESUMEN

Novel nanoscale drug delivery biomaterials are of great importance for the diagnosis and treatment of different cancers. We have developed a new pegylated squalene (SQ-PEG) derivative with self-assembly properties. Supramolecular assembly with a lipophilic photosensitizer pyropheophorbide-a (Ppa) by nanoprecipitation gave nanoconstructs SQ-PEG:Ppa with an average size of 200 nm in diameter and a drug loading of 18% (w/w). The composite material demonstrates nanoscale optical properties by tight packing of Ppa within Sq-PEG:Ppa resulting in 99.99% fluorescence self-quenching. The biocompatibility of the nanomaterial and cell phototoxicity under light irradiation were investigated on PC3 prostate tumor cells in vitro. SQ-PEG:Ppa showed excellent phototoxic effect at low light dose of 5.0 J/cm2 as a consequence of efficient cell internalization of Ppa by the nanodelivery system. The diagnostic potential of SQ-PEG:Ppa nanoconstructs to deliver Ppa to tumors in vivo was demonstrated in chick embryo model implanted with U87MG glioblastoma micro tumors.


Asunto(s)
Clorofila/análogos & derivados , Glioblastoma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Escualeno/administración & dosificación , Nanomedicina Teranóstica , Animales , Apoptosis , Proliferación Celular , Embrión de Pollo , Clorofila/química , Membrana Corioalantoides/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Luz , Masculino , Ratones , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Polietilenglicoles/química , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Escualeno/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Photochem Photobiol Sci ; 17(11): 1728-1738, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215073

RESUMEN

Herein, we report the synthesis of a new prodrug system consisting of regioselectively addressable functionalized templates bearing multiple pheophorbide A moieties for use in photodynamic therapy. These coupling reactions were achieved using copper-free "click" chemistry, namely a strain-promoted azide-alkyne cycloaddition. This new design was used to obtain well-defined quenched photosensitizer prodrugs with perfect knowledge of the number and position of loaded photosensitizers, providing structures bearing up to six photosentitizers and two PEG chains. These conjugates are ideally quenched in their native state regarding their fluorescence emission (up to 155 ± 28 times less fluorescent for an hexasubstituted conjugate than a monosubstituted non-quenched reference compound) or singlet oxygen production (decreased 8.7-fold in the best case) when excited. After 2 h of proteolytic activation, the fluorescence emission of a tetrasubstituted conjugate was increased 17-fold compared with the initial fluorescence emission.


Asunto(s)
Clorofila/análogos & derivados , Sistemas de Liberación de Medicamentos , Péptidos Cíclicos/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Profármacos/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescencia , Estructura Molecular , Péptidos Cíclicos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Profármacos/química , Proteolisis , Estereoisomerismo , Tripsina/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
16.
Photochem Photobiol Sci ; 17(11): 1739-1748, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215090

RESUMEN

Previously, we have shown that the use of a cyclopeptidic carrier could be of great interest for the design of fully characterized prodrugs for further use in photodynamic therapy. In order to further optimize the design, we decided to modify the highly quenched conjugate uPA-cPPP4/5 by co-loading a long-distance fluorescence quencher. For this purpose we tethered two black hole quenchers (BHQ3) together with two pheophorbide A moities onto the same PEGylated backbone and assessed the modified photophysical properties. In addition, to prove the reliability of our concept, we designed two analogues, uPA-cPPQ2+2/5 and CathB-cPPQ2+2/5, by using two different peptidic linkers as substrates for uPA and cathepsin B, respectively. These two conjugates proved to be much more water-soluble than their analogues bearing only Phas. These conjugates are not only highly quenched in their native state with regard to their fluorescence emission (up to 850 ± 287 times less fluorescent for CathB-cPPQ2+2/5 as compared to the unquenched monosubstituted reference uPA-cPPP1/5), but also prevent singlet oxygen production (with a total quenching of the emission when the quenchers are co-loaded with photosensitizers) when the photosentistizers are excited. After proteolytic activation, these conjugates recover their photophysical properties in the same way as occurred for uPA-cPPP4/5, with up to a 120-fold increase in fluorescence emission for uPA-cPPQ2+2/5 after two hours of incubation with uPA.


Asunto(s)
Clorofila/análogos & derivados , Sistemas de Liberación de Medicamentos , Péptidos Cíclicos/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Profármacos/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescencia , Humanos , Estructura Molecular , Péptidos Cíclicos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Profármacos/química , Proteolisis
17.
Bioconjug Chem ; 29(8): 2531-2540, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29869878

RESUMEN

Novel drug delivery systems targeting native, transplanted, or cancerous beta-cells are of utmost importance. Herein, we present new exendin-4 derivatives with modified unnatural amino acids at strategic positions within the polypeptide sequence. The modified peptides allowed modular orthogonal chemical modifications to attach imaging agents and amphiphilic squalene-PEG groups. The resulting conjugates, SQ-PEG-ExC1-Cy5 and SQ-PEG-ExC40-Cy5 fluorescence probes, display low nanomolar affinity to GLP-1R in fluorescence-based binding assays with EC50 at 1.1 ± 0.2 and 0.8 ± 0.2 nM, respectively. Naturally expressing GLP-1R MIN6 cells and recombinantly transfected CHL-GLP-1R positive cells were specifically targeted by all of the new beta-cell probes in vitro. Specific islet targeting was observed after i.v. injection of SQ-PEG-ExC1-Cy5 with SQ-PEG in normoglycemic mice ex vivo. Semiquantitative biodistribution analysis by epifluorescence indicated prolonged blood half-life (3.8 h) for the amphiphilic Ex conjugate. Liver and pancreas were identified as main biodistribution organs for SQ-PEG-ExC1-Cy5.


Asunto(s)
Exenatida/química , Células Secretoras de Insulina/metabolismo , Polietilenglicoles/química , Escualeno/química , Animales , Sistemas de Liberación de Medicamentos , Exenatida/administración & dosificación , Células HeLa , Humanos , Inyecciones Intraventriculares , Ratones , Polietilenglicoles/administración & dosificación , Escualeno/administración & dosificación , Distribución Tisular
18.
J Photochem Photobiol B ; 179: 84-90, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29353702

RESUMEN

Rose Bengal-acetate (RB-Ac) is a pro-photosensitizer claimed to diffuse into target cells, where the acetate groups are hydrolyzed and the photosensitizing properties of Rose Bengal (RB) are restored. Despite promising results on tumor cells, the interaction of RB-Ac with bacteria has never been investigated. This study aimed to assess the interaction of RB-Ac with Enterococcus faecalis and to evaluate its potential use in antimicrobial photodynamic therapy (aPDT). Spectrofluorometry was used to assess the ability of E. faecalis to hydrolyze the RB-Ac compound. Fluorescence microscopy was employed to observe the distribution and to evaluate the cellular uptake of the RB produced. The antibacterial efficiency of RB-Ac-mediated aPDT was assessed by flow cytometry in combination with the LIVE/DEAD® staining. Results showed that RB-Ac was successfully hydrolyzed in the presence of E. faecalis cells. The RB produced appeared to incorporate the membrane of bacteria. Higher concentrations of RB-Ac resulted in higher incorporation of RB. The blue-light irradiation of RB-Ac-treated samples significantly reduced bacterial viability. Less than 0.01% of E. faecalis survived after incubation with 200 µM RB-Ac during 900 min and blue-light activation. The current report indicates that E. faecalis cells can hydrolyze the RB-Ac compound to produce active RB. The use of RB-Ac did not appear to allow cytoplasmic internalization of the RB produced, which rather incorporated the membrane bilayers of E. faecalis. The use of RB-Ac did not provide additional advantages over RB in terms of PS localization. Nonetheless, sufficient RB was produced and incorporated into the membranes of bacteria to elicit effective aPDT.


Asunto(s)
Enterococcus faecalis/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Rosa Bengala/análogos & derivados , Enterococcus faecalis/efectos de la radiación , Hidrólisis/efectos de la radiación , Luz , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Microscopía Fluorescente , Rosa Bengala/farmacología , Espectrometría de Fluorescencia
19.
Nanoscale Res Lett ; 13(1): 10, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29327259

RESUMEN

Protoporphyrin IX (PpIX) as natural photosensitizer derived from administration of 5-aminolevulinic acid (5-ALA) has found clinical use for photodiagnosis and photodynamic therapy of several cancers. However, broader use of 5-ALA in oncology is hampered by its charge and polarity that result in its reduced capacity for passing biological barriers and reaching the tumor tissue. Advanced drug delivery platforms are needed to improve the biodistribution of 5-ALA. Here, we report a new approach for the delivery of 5-ALA. Squalenoylation strategy was used to covalently conjugate 5-ALA to squalene, a natural precursor of cholesterol. 5-ALA-SQ nanoassemblies were formed by self-assembly in water. The nanoassemblies were monodisperse with average size of 70 nm, polydispersity index of 0.12, and ζ-potential of + 36 mV. They showed good stability over several weeks. The drug loading of 5-ALA was very high at 26%. In human prostate cancer cells PC3 and human glioblastoma cells U87MG, PpIX production was monitored in vitro upon the incubation with nanoassemblies. They were more efficient in generating PpIX-induced fluorescence in cancer cells compared to 5-ALA-Hex at 1.0 to 3.3 mM at short and long incubation times. Compared to 5-ALA, they showed superior fluorescence performance at 4 h which was diminished at 24 h. 5-ALA-SQ presents a novel nano-delivery platform with great potential for the systemic administration of 5-ALA.

20.
Angew Chem Int Ed Engl ; 56(35): 10418-10422, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28639393

RESUMEN

We adopted a spirocyclization-based strategy to design γ-glutamyl hydroxymethyl selenorhodamine green (gGlu-HMSeR) as a photo-inactive compound that would be specifically cleaved by the tumor-associated enzyme γ-glutamyltranspeptidase (GGT) to generate the potent photosensitizer HMSeR. gGlu-HMSeR has a spirocyclic structure and is colorless and does not show marked phototoxicity toward low-GGT-expressing cells or normal tissues upon irradiation with visible light. In contrast, HMSeR predominantly takes an open structure, is colored, and generates reactive oxygen species upon irradiation. The γ-glutamyl group thus serves as a tumor-targeting moiety for photodynamic therapy (PDT), switching on tumor-cell-specific phototoxicity. To validate this system, we employed chick chorioallantoic membrane (CAM), a widely used model for preliminary evaluation of drug toxicity. Photoirradiation after gGlu-HMSeR treatment resulted in selective ablation of implanted tumor spheroids without damage to healthy tissue.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Fármacos Fotosensibilizantes/farmacología , Compuestos de Espiro/farmacología , gamma-Glutamiltransferasa/antagonistas & inhibidores , Células A549 , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Espiro/química , gamma-Glutamiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...