Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997251

RESUMEN

Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron-satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.


Asunto(s)
Ganglios Simpáticos , Neuroglía , Animales , Supervivencia Celular , Ratones , Neuroglía/fisiología , Neuronas , Transducción de Señal
2.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33712461

RESUMEN

Retinal ganglion cells (RGCs) relay visual information from the eye to the brain. RGCs are the first cell type generated during retinal neurogenesis. Loss of function of the transcription factor Atoh7, expressed in multipotent early neurogenic retinal progenitors leads to a selective and essentially complete loss of RGCs. Therefore, Atoh7 is considered essential for conferring competence on progenitors to generate RGCs. Despite the importance of Atoh7 in RGC specification, we find that inhibiting apoptosis in Atoh7-deficient mice by loss of function of Bax only modestly reduces RGC numbers. Single-cell RNA sequencing of Atoh7;Bax-deficient retinas shows that RGC differentiation is delayed but that the gene expression profile of RGC precursors is grossly normal. Atoh7;Bax-deficient RGCs eventually mature, fire action potentials, and incorporate into retinal circuitry but exhibit severe axonal guidance defects. This study reveals an essential role for Atoh7 in RGC survival and demonstrates Atoh7-dependent and Atoh7-independent mechanisms for RGC specification.

3.
Nature ; 581(7807): 194-198, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32404998

RESUMEN

Daily changes in light and food availability are major time cues that influence circadian timing1. However, little is known about the circuits that integrate these time cues to drive a coherent circadian output1-3. Here we investigate whether retinal inputs modulate entrainment to nonphotic cues such as time-restricted feeding. Photic information is relayed to the suprachiasmatic nucleus (SCN)-the central circadian pacemaker-and the intergeniculate leaflet (IGL) through intrinsically photosensitive retinal ganglion cells (ipRGCs)4. We show that adult mice that lack ipRGCs from the early postnatal stages have impaired entrainment to time-restricted feeding, whereas ablation of ipRGCs at later stages had no effect. Innervation of ipRGCs at early postnatal stages influences IGL neurons that express neuropeptide Y (NPY) (hereafter, IGLNPY neurons), guiding the assembly of a functional IGLNPY-SCN circuit. Moreover, silencing IGLNPY neurons in adult mice mimicked the deficits that were induced by ablation of ipRGCs in the early postnatal stages, and acute inhibition of IGLNPY terminals in the SCN decreased food-anticipatory activity. Thus, innervation of ipRGCs in the early postnatal period tunes the IGLNPY-SCN circuit to allow entrainment to time-restricted feeding.


Asunto(s)
Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Luz , Vías Nerviosas , Retina/fisiología , Animales , Axones/fisiología , Axones/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Señales (Psicología) , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de la radiación , Conducta Alimentaria/efectos de la radiación , Femenino , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/efectos de la radiación , Masculino , Ratones , Vías Nerviosas/efectos de la radiación , Neuropéptido Y/metabolismo , Retina/citología , Retina/efectos de la radiación , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal/efectos de la radiación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451647

RESUMEN

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Islotes Pancreáticos/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M3/efectos de los fármacos , Acetilcolina/metabolismo , Adulto , Regulación Alostérica/efectos de los fármacos , Animales , Glucemia/análisis , Glucemia/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , Persona de Mediana Edad , Agonistas Muscarínicos/uso terapéutico , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Cultivo Primario de Células , Prueba de Estudio Conceptual , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Adulto Joven
5.
Brain Res ; 1700: 152-159, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30153458

RESUMEN

Light influences the daily patterning of activity by both synchronizing internal clocks to environmental light-dark cycles and acutely modulating arousal states, a process known as masking. Masking responses are completely reversed in diurnal and nocturnal species. In nocturnal rodents, masking is mediated through a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) whose projections are similar in diurnal and nocturnal rodents. This raises the possibility that differences in responsivity to signals that these cells release might underlie chronotype differences in masking. We explored one aspect of this hypothesis by examining the distribution of excitatory and inhibitory neuronal populations in many ipRGC target areas of a diurnal species (Nile grass rat) and a nocturnal one (Norway rat). We discovered that while many of these regions were very similar in these two species, there were striking differences in the ventral lateral geniculate nucleus (vLGN; higher density of glutamate cells in Norway rats) and in the lateral habenula (LHb; GABAeric cells present in grass rats, but not Norway rats). These patterns raise the possibility that the vLGN and LHb contribute to differences in masking and/or circadian regulation of diurnal and nocturnal species.


Asunto(s)
Encéfalo/citología , Ritmo Circadiano , Ácido Glutámico/metabolismo , Muridae/anatomía & histología , Neuronas/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Masculino , Muridae/metabolismo , Neuronas/metabolismo , Especificidad de la Especie
6.
Front Neuroanat ; 9: 93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236201

RESUMEN

The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit ß coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.

7.
Front Hum Neurosci ; 8: 440, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24994977

RESUMEN

The function of the ventral parietal cortex (VPC) is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

8.
J Biol Rhythms ; 29(3): 192-202, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24916392

RESUMEN

Light not only entrains the circadian system but also has acute effects on physiology and behavior, a phenomenon known as masking. Behavioral masking responses to bright light differ in diurnal and nocturnal species, such that light increases arousal in the former and decreases it in the latter. Comparisons made within a species that displays both diurnal and nocturnal patterns of behavior may provide insight into how masking differs between chronotypes and the association between mechanisms controlling masking and the circadian drive for activity. Nile grass rats (Arvicanthis niloticus) provide a useful model for studying such issues because when these animals are housed with running wheels, some run primarily during day, while others run at night. Here we compared behavioral masking responses to 2-h pulses of light and darkness given across a 12:12 light/dark cycle in day-active (DA) and night-active (NA) grass rats. Both wheel-running activity (WRA) and general activity (GA) were monitored. Light pulses at night tended to increase both WRA and GA overall in the DA grass rats, while in NA grass rats, light pulses significantly reduced WRA but had no effect on GA. Dark pulses during the day tended to decrease both WRA and GA in the DA grass rats, while in the NA grass rats, they tended to increase WRA in the early day but had no effect on GA overall. Next, we measured cFos expression within 2 brain areas potentially involved in masking, the intergeniculate leaflet (IGL) and the olivary pretectal area (OPT), of DA and NA grass rats either sacrificed on a control night or after a 1-h light pulse at ZT14. In DA grass rats, light at ZT14 induced cFos in the IGL and OPT, whereas in NA grass rats, cFos levels in both structures were high at ZT14 and were not altered by a 1-h light pulse. Overall, these results suggest that masking responses to light and darkness are dependent on the chronotype of the individual and that the responsiveness of the IGL and OPT to light may depend on or contribute to the behavioral response of these animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...