Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1141669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063262

RESUMEN

The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing and the conventional treatments for this form of cancer can be tough. Despite the success of existing immunotherapies in some HNSCC patients, many do not respond to this type of treatment. Thus, the development of novel anti-cancer therapies should be prioritized. In the current study, the anticancer activity of a panel of novel compounds, herein termed marine product mimics (MPMs), against HNSCC cell lines is explored. The previously reported compound MPM-1, which is structurally related to the novel MPMs, was shown to have promising effects on the HNSCC cell line HSC-3. The results from the current study indicate that the novel MPMs are more potent than MPM-1 but cause a similar type of cell death. The results indicated that the MPMs must cross through the cell membrane to exert their action and that they are lysosomotropic. Further experiments showed that some of the MPMs could induce phosphorylation of eukaryotic initiation factor 2α (eIF2α) in HSC-3 and UT-SCC-24A cells, which indicates that they can activate the integrated stress response that is strongly associated with immunogenic cell death. Cell surface expression of calreticulin and release of HMGB1 and ATP, which are all hallmarks of immunogenic cell death, was also demonstrated in HSC-3 and UT-SCC-24A cells treated with MPMs. This suggests that the MPMs are interesting candidates for future HNSCC cancer therapies.

2.
Eur J Med Chem ; 249: 115147, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36739750

RESUMEN

Mimics of antimicrobial peptides (AMPs) have been proposed as a promising class of antimicrobial agents. We report the analysis of five tetrasubstituted, cationic, amphipathic heterocycles as potential AMP mimics. The analysis showed that the heterocyclic scaffold had a strong influence on the haemolytic activity of the compounds, and the hydantoin scaffold was identified as a promising template for drug lead development. Subsequently, a total of 20 hydantoin derivatives were studied for their antimicrobial potency and haemolytic activity. We found 19 of these derivatives to have very low haemolytic toxicity and identified three lead structures, 2dA, 6cG, and 6dG with very promising broad-spectrum antimicrobial activity. Lead structure 6dG displayed minimum inhibitory concentration (MIC) values as low as 1 µg/mL against Gram-positive bacteria and 4-16 µg/mL against Gram-negative bacteria. Initial mode of action (MoA) studies performed on the amine derivative 6cG, utilizing a luciferase-based biosensor assay, suggested a strong membrane disrupting effect on the outer and inner membrane of Escherichia coli. Our findings show that the physical properties and structural arrangement induced by the heterocyclic scaffolds are important factors in the design of AMP mimics.


Asunto(s)
Antiinfecciosos , Hidantoínas , Hidantoínas/farmacología , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química
3.
Opt Express ; 30(26): 46248-46258, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558583

RESUMEN

The patterning of x-ray grating surfaces by electron-beam lithography offers large flexibility to realize complex optical functionalities. Here, we report on a proof-of-principle experiment to demonstrate the correction of slope errors of the substrates by modulating the local density of the grating lines. A surface error map of a test substrate was determined by optical metrology and served as the basis for an aligned exposure of a corrected grating pattern made by electron-beam lithography. The correction is done by a variation of the local line density in order to compensate for the local surface error. Measurements with synchrotron radiation and simulations in the soft X-ray range confirm that the effects of slope errors were strongly reduced over an extended wavelength range.

4.
Eur J Med Chem ; 241: 114632, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36027613

RESUMEN

An amphipathic barbiturate mimic of the marine eusynstyelamides is reported as a promising class of antimicrobial agents. We hereby report a detailed analysis of the structure-activity relationship for cationic amphipathic N,N'-dialkylated-5,5-disubstituted barbiturates. The influence of various cationic groups, hydrocarbon linkers and lipophilic side chains on the compounds' antimicrobial potency and haemolytic activity was studied. A comprehensive library of 58 compounds was prepared using a concise synthetic strategy. We found cationic amine and guanidyl groups to yield the highest broad-spectrum activity and cationic trimethylated quaternary amine groups to exert narrow-spectrum activity against Gram-positive bacteria. n-Propyl hydrocarbon linkers proved to be the best compromise between potency and haemolytic activity. The combination of two different lipophilic side chains allowed for further fine-tuning of the biological properties. Using these insights, we were able to prepare both, the potent narrow-spectrum barbiturate 8a and the broad-spectrum barbiturates 11lG, 13jA and 13jG, all having low or no haemolytic activity. The guanidine derivative 11lG demonstrated a strong membrane disrupting effect in luciferase-based assays. We believe that these results may be valuable in further development of antimicrobial lead structures.


Asunto(s)
Antiinfecciosos , Bacterias Gramnegativas , Aminas , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Barbitúricos/farmacología , Cationes/química , Cationes/farmacología , Hemólisis , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
5.
J Med Chem ; 64(15): 11395-11417, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34314189

RESUMEN

We report a series of synthetic cationic amphipathic barbiturates inspired by the pharmacophore model of small antimicrobial peptides (AMPs) and the marine antimicrobials eusynstyelamides. These N,N'-dialkylated-5,5-disubstituted barbiturates consist of an achiral barbiturate scaffold with two cationic groups and two lipophilic side chains. Minimum inhibitory concentrations of 2-8 µg/mL were achieved against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum ß-lactamase-carbapenemase production. The guanidine barbiturate 7e (3,5-di-Br) demonstrated promising in vivo antibiotic efficacy in mice infected with clinical isolates of Escherichia coli and Klebsiella pneumoniae using a neutropenic peritonitis model. Mode of action studies showed a strong membrane disrupting effect and was supported by nuclear magnetic resonance and molecular dynamics simulations. The results express how the pharmacophore model of small AMPs and the structure of the marine eusynstyelamides can be used to design highly potent lead peptidomimetics against multi-resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Barbitúricos/farmacología , Productos Biológicos/farmacología , Guanidinas/farmacología , Indoles/farmacología , Proteínas Citotóxicas Formadoras de Poros/farmacología , Tensoactivos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Barbitúricos/síntesis química , Barbitúricos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Guanidinas/síntesis química , Guanidinas/química , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteínas Citotóxicas Formadoras de Poros/síntesis química , Proteínas Citotóxicas Formadoras de Poros/química , Relación Estructura-Actividad , Tensoactivos/síntesis química , Tensoactivos/química
6.
Eur J Med Chem ; 145: 634-648, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29348071

RESUMEN

ß-Lactam antibiotics are of utmost importance when treating bacterial infections in the medical community. However, currently their utility is threatened by the emergence and spread of ß-lactam resistance. The most prevalent resistance mechanism to ß-lactam antibiotics is expression of ß-lactamase enzymes. One way to overcome resistance caused by ß-lactamases, is the development of ß-lactamase inhibitors and today several ß-lactamase inhibitors e.g. avibactam, are approved in the clinic. Our focus is the oxacillinase-48 (OXA-48), an enzyme reported to spread rapidly across the world and commonly identified in Escherichia coli and Klebsiella pneumoniae. To guide inhibitor design, we used diversely substituted 3-aryl and 3-heteroaryl benzoic acids to probe the active site of OXA-48 for useful enzyme-inhibitor interactions. In the presented study, a focused fragment library containing 49 3-substituted benzoic acid derivatives were synthesised and biochemically characterized. Based on crystallographic data from 33 fragment-enzyme complexes, the fragments could be classified into R1 or R2 binders by their overall binding conformation in relation to the binding of the R1 and R2 side groups of imipenem. Moreover, binding interactions attractive for future inhibitor design were found and their usefulness explored by the rational design and evaluation of merged inhibitors from orthogonally binding fragments. The best inhibitors among the resulting 3,5-disubstituted benzoic acids showed inhibitory potential in the low micromolar range (IC50 = 2.9 µM). For these inhibitors, the complex X-ray structures revealed non-covalent binding to Arg250, Arg214 and Tyr211 in the active site and the interactions observed with the mono-substituted fragments were also identified in the merged structures.


Asunto(s)
Diseño de Fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/enzimología , Klebsiella pneumoniae/enzimología , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
7.
Sci Rep ; 7: 41157, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145463

RESUMEN

Programmability of stable magnetization configurations in a magnetic device is a highly desirable feature for a variety of applications, such as in magneto-transport and spin-wave logic. Periodic systems such as antidot lattices may exhibit programmability; however, to achieve multiple stable magnetization configurations the lattice geometry must be optimized. We consider the magnetization states in Co-antidot lattices of ≈50 nm thickness and ≈150 nm inter-antidot distance. Micromagnetic simulations were applied to investigate the magnetization states around individual antidots during the reversal process. The reversal processes predicted by micromagnetics were confirmed by experimental observations. Magnetization reversal in these antidots occurs via field driven transition between 3 elementary magnetization states - termed G, C and Q. These magnetization states can be described by vectors, and the reversal process proceeds via step-wise linear operations on these vector states. Rules governing the co-existence of the three magnetization states were empirically observed. It is shown that in an n × n antidot lattice, a variety of field switchable combinations of G, C and Q can occur, indicating programmability of the antidot lattices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...