Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 197(10): 4118-4126, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798148

RESUMEN

Nucleic acid recognition is an important mechanism that enables the innate immune system to detect microbial infection and tissue damage. To minimize the recognition of self-derived nucleic acids, all nucleic acid-sensing signaling receptors are sequestered away from the cell surface and are activated in the cytoplasm or in endosomes. Nucleic acid sensing in endosomes relies on members of the TLR family. The receptor for advanced glycation end-products (RAGE) was recently shown to bind DNA at the cell surface, facilitating DNA internalization and subsequent recognition by TLR9. In this article, we show that RAGE binds RNA molecules in a sequence-independent manner and enhances cellular RNA uptake into endosomes. Gain- and loss-of-function studies demonstrate that RAGE increases the sensitivity of all ssRNA-sensing TLRs (TLR7, TLR8, TLR13), suggesting that RAGE is an integral part of the endosomal nucleic acid-sensing system.


Asunto(s)
Endosomas/metabolismo , ARN/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Receptores Toll-Like/inmunología , ADN/genética , ADN/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Reacción en Cadena de la Polimerasa , ARN/genética , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/inmunología , Receptor Toll-Like 8/metabolismo
2.
Methods Mol Biol ; 1390: 41-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26803621

RESUMEN

Protein-protein interactions regulate biological networks. The most proximal events that initiate signal transduction frequently are receptor dimerization or conformational changes in receptor complexes. Toll-like receptors (TLRs) are transmembrane receptors that are activated by a number of exogenous and endogenous ligands. Most TLRs can respond to multiple ligands and the different TLRs recognize structurally diverse molecules ranging from proteins, sugars, lipids, and nucleic acids. TLRs can be expressed on the plasma membrane or in endosomal compartments and ligand recognition thus proceeds in different microenvironments. Not surprisingly, distinctive mechanisms of TLR receptor activation have evolved. A detailed understanding of the mechanisms of TLR activation is important for the development of novel synthetic TLR activators or pharmacological inhibitors of TLRs. Confocal laser scanning microscopy combined with GFP technology allows the direct visualization of TLR expression in living cells. Fluorescence resonance energy transfer (FRET) measurements between two differentially tagged proteins permit the study of TLR interaction, and distances between receptors in the range of molecular interactions can be measured and visualized. Additionally, FRET measurements combined with confocal microscopy provide detailed information about molecular interactions in different subcellular localizations. These techniques permit the dynamic visualization of early signaling events in living cells and can be utilized in pharmacological or genetic screens.


Asunto(s)
Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Microscopía Fluorescente , Receptores Toll-Like/metabolismo , Línea Celular , Citometría de Flujo/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Microscopía Fluorescente/métodos , Unión Proteica , Transducción de Señal
3.
Shock ; 36(6): 613-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22089127

RESUMEN

Severe sepsis and septic shock are often accompanied by acute cardiovascular depression. Lipopolysaccharide (LPS) signaling via Toll-like receptor 4 (TLR4) can induce septic organ dysfunction. The aim of this study was to elucidate the in vivo impact of pharmacological TLR4 antagonism on LPS-induced cardiovascular depression using eritoran tetrasodium (E5564). To simulate sepsis, C3H/HeN mice were challenged i.p. with 2 mg/kg body weight LPS. With the intent to antagonize the LPS effects, eritoran was administered i.v. (4 mg/kg body weight). Physical activity, peripheral blood pressure, and heart frequency were recorded before and after LPS and eritoran injection. In addition, intracardiac hemodynamic parameters were analyzed with a pressure conductance catheter. After 2 and 6 h of LPS stimulation ± eritoran treatment, the hearts and aortae were harvested, and TLR as well as inflammatory mediator expression was measured using reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Lipopolysaccharide significantly decreased arterial blood pressure over time. Administration of eritoran partially prevented the LPS-dependent reduction in blood pressure and preserved cardiac function. In addition, LPS increased the expression of CD14 and TLR2 in cardiac and aortic tissue. In aortic tissue, eritoran attenuated this increase, whereas no significant reduction was observed in the heart. Furthermore, cardiac and aortic inducible nitric oxide synthetase mRNA levels were significantly increased 6 h after LPS application. This effect was reduced in the presence of eritoran. In summary, the beneficial influence of eritoran on cardiovascular function in vivo seems to rely mainly on reduction of LPS-induced inducible nitric oxide synthetase expression as well as on attenuated cytokine expression in the vascular wall.


Asunto(s)
Disacáridos/uso terapéutico , Endotoxemia/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Fosfatos de Azúcar/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Endotoxemia/inducido químicamente , Femenino , Lipopolisacáridos/toxicidad , Masculino , Ratones
4.
Mol Ecol Resour ; 9(3): 691-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-21564726

RESUMEN

Molecular techniques such as DNA barcoding have become popular in assisting species identification especially for cryptic species complexes. We have analysed data from a 468-bp region of the mitochondrial cytochrome oxidase subunit I (COI) gene from 200 specimens of 12 species of endemic New Zealand leafroller moths (Tortricidae) from the genera Planotortrix and Ctenopseustis to assess whether the DNA barcoding region can distinguish these species. Among the 200 sequences analysed, 72 haplotypes were recovered, with each genus forming a separate major clade. Maximum likelihood phylogenetic methods were used to test whether species fell into reciprocally monophyletic clades. The optimal phylogeny showed that four species within the genus Ctenopseustis (C. obliquana, C. herana, C. filicis and C. fraterna) and three within Planotortrix (P. octo, P. excessana and P. avicenniae) are polyphyletic. Shimodaira-Hasegawa tests rejected a null hypothesis of monophyly for the species C. obliquana, C. herana, P. octo and P. excessana. Comparisons of within and between species levels of sequence divergence for the same set of seven species showed cases where maximum levels of within-species divergence were greater than some levels of between-species divergence. DNA barcoding using this region of the COI gene is able to distinguish the two genera and some species within each genus; however, many species cannot be identified using this method. Finally, we discuss the possible reasons for this polyphyly, including incomplete lineage sorting, introgression, horizontal gene transfer and incorrect taxonomy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...