Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 829, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563448

RESUMEN

Oscillatory activity is commonly observed during the maintenance of information in short-term memory, but its role remains unclear. Non-oscillatory models of short-term memory storage are able to encode stimulus identity through their spatial patterns of activity, but are typically limited to either an all-or-none representation of stimulus amplitude or exhibit a biologically implausible exact-tuning condition. Here we demonstrate a simple mechanism by which oscillatory input enables a circuit to generate persistent or sequential activity that encodes information not only in the spatial pattern of activity, but also in the amplitude of activity. This is accomplished through a phase-locking phenomenon that permits many different amplitudes of persistent activity to be stored without requiring exact tuning of model parameters. Altogether, this work proposes a class of models for the storage of information in working memory, a potential role for brain oscillations, and a dynamical mechanism for maintaining multi-stable neural representations.


Asunto(s)
Encéfalo , Memoria a Corto Plazo
2.
Front Syst Neurosci ; 16: 818633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35177969

RESUMEN

Throughout the brain, parallel processing streams compose the building blocks of complex neural functions. One of the most salient models for studying the functional specialization of parallel visual streams in the primate brain is the lateral geniculate nucleus (LGN) of the dorsal thalamus, through which the parvocellular and magnocellular channels, On-center and Off-center channels, and ipsilateral and contralateral eye channels are maintained and provide the foundation for cortical processing. We examined three aspects of neural processing in these streams: (1) the relationship between extraclassical surround suppression, a widespread visual computation thought to represent a canonical neural computation, and the parallel channels of the LGN; (2) the magnitude of binocular interaction in the parallel streams; and (3) the magnitude of suppression elicited by perceptual competition (binocular rivalry) in each stream. Our results show that surround suppression is almost exclusive to Off channel cells; further, we found evidence for two different components of monocular surround suppression-an early-stage suppression exhibited by all magnocellular cells, and a late-stage suppression exhibited only by Off cells in both the parvocellular and magnocellular pathways. This finding indicates that stream-specific circuits contribute to surround suppression in the primate LGN and suggests a distinct role for suppression in the Off channel to the cortex. We also examined the responses of LGN neurons in alert macaque monkeys to determine whether neurons that supply the cortex with visual information are influenced by stimulation of both eyes. Our results demonstrate that LGN neurons are not influenced by stimulation of the non-dominant eye. This was the case when dichoptic stimuli were presented to classical receptive fields of neurons, extraclassical receptive fields of neurons, and when stimuli were appropriate to produce the perception of binocular rivalry.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35859653

RESUMEN

In simplified models of neocortical circuits, inhibition is either modeled in a feedforward manner or through mutual inhibitory interactions that provide for competition between neuronal populations. By contrast, recent work has suggested a critical role for recurrent inhibition as a negative feedback element that stabilizes otherwise unstable recurrent excitation. Here, we show how models based upon a motif of recurrently connected "E-I" pairs of excitatory and inhibitory units can be used to describe experimental observations in sensory and memory networks. In a sensory network model of binocular rivalry, a model based on competing E-I motifs captures psychophysical observations about how incongruous images presented to the two eyes compete. In a model of cortical working memory, an architecturally similar model with modified synaptic time constants can mathematically accumulate signals into a working memory buffer in a manner that is robust to the abrupt removal of cells. These results suggest the inhibition-stabilized E-I motif as a fundamental building block for models of a wide array of neocortical dynamics.

4.
Brain Behav Immun ; 23(7): 958-68, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19464360

RESUMEN

Recent work from our laboratory and others has shown that certain stressors increase expression of the pro-inflammatory cytokine interleukin-1beta (IL-1) in the hypothalamus. The first goal of the following studies was to assess the impact of acute stress on other key inflammatory factors, including both cytokines and cell surface markers for immune-derived cells resident to the CNS in adult male Sprague Dawley rats exposed to intermittent footshock (80 shocks, 90 s variable ITI, 5 s each). While scattered changes in IL-6 and GFAP were observed in the hippocampus and cortex, we found the hypothalamus to be exquisitely sensitive to the effects of footshock. At the level of the hypothalamus, mRNA for IL-1 and CD14 were significantly increased, while at the same time CD200R mRNA was significantly decreased. A subsequent experiment demonstrated that propranolol (20mg/kg i.p.) blocked the increase in IL-1 and CD14 mRNA observed in the hypothalamus, while the decrease in CD200R was unaffected by propranolol. Interestingly, inhibition of glucocorticoid synthesis via injection of metyrapone (50mg/kg s.c.) plus aminoglutethimide (100mg/kg s.c.) increased basal IL-1 mRNA and augmented IL-1 and CD14 expression provoked by footshock. Injection of minocycline, a putative microglial inhibitor, blocked the IL-1 response to footshock, while CD14 and CD200R were unaffected. Together, these gene expression changes (i) provide compelling evidence that stress may provoke neuroinflammatory changes that extend well beyond isolated changes in a single cytokine; (ii) suggest opposing roles for classic stress-responsive factors (norepinephrine and corticosterone) in the modulation of stress-related neuroinflammation; (iii) indicate microglia within the hypothalamus may be key players in stress-related neuroinflammation; and (iv) provide a potential mechanism (increased CD14) by which acute stress primes reactivity to later immune challenge.


Asunto(s)
Hipotálamo/fisiología , Interleucina-1/genética , Receptores de Lipopolisacáridos/genética , Microglía/fisiología , Neuronas/fisiología , Estrés Fisiológico/genética , Antagonistas Adrenérgicos beta/farmacología , Análisis de Varianza , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Corticosterona/sangre , Electrochoque , Inhibidores Enzimáticos/farmacología , Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Hipotálamo/efectos de los fármacos , Interleucina-1/inmunología , Receptores de Lipopolisacáridos/inmunología , Masculino , Metirapona/farmacología , Microglía/efectos de los fármacos , Minociclina/farmacología , Propranolol/farmacología , ARN Mensajero/fisiología , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...