Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Leukemia ; 38(7): 1570-1580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38454120

RESUMEN

Although Bruton's tyrosine kinase (BTK) inhibitors (BTKi) have significantly improved patient prognosis, mantle cell lymphoma (MCL) is still considered incurable due to primary and acquired resistance. We have recently shown that aberrant expression of the Src-family tyrosine kinase hematopoietic cell kinase (HCK) in MCL correlates with poor prognosis, and that genetic HCK perturbation impairs growth and integrin-mediated adhesion of MCL cells. Here, we show that KIN-8194, a dual inhibitor of BTK and HCK with in vivo activity against Myd88-L265P-driven diffuse large B-cell lymphoma and Waldenström Macroglobulinemia, has a potent growth inhibitory effect in MCL cell lines and primary MCL cells, irrespective of their sensitivity to BTKi (ibrutinib and acalabrutinib). In BTKi-resistant cells this is mediated by inhibition of HCK, which results in repression of AKT-S6 signaling. In addition, KIN-8194 inhibits integrin-mediated adhesion of BTKi-sensitive and insensitive MCL cells to fibronectin and stromal cells in an HCK-dependent manner. Finally, we show that MCL cells with acquired BTKi resistance retain their sensitivity to KIN-8194. Taken together, our data demonstrate that KIN-8194 inhibits growth and integrin-mediated adhesion of BTKi-sensitive MCL cells, as well as MCL cells with primary or acquired BTKi resistance. This renders KIN-8194 a promising novel treatment for MCL patients.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Adhesión Celular , Proliferación Celular , Resistencia a Antineoplásicos , Integrinas , Linfoma de Células del Manto , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-hck , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/genética , Humanos , Adhesión Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-hck/metabolismo , Proteínas Proto-Oncogénicas c-hck/genética , Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Integrinas/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Pirimidinas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Transducción de Señal/efectos de los fármacos
2.
Blood Cancer J ; 13(1): 125, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37591861

RESUMEN

MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.


Asunto(s)
Linfoma de Células B Grandes Difuso , Factor 88 de Diferenciación Mieloide , Humanos , Proteínas Adaptadoras Transductoras de Señales , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B , Fosforilación
3.
Blood Cancer J ; 13(1): 37, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922488

RESUMEN

The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is a protease and scaffold protein essential in propagating B-cell receptor (BCR) signaling to NF-κB. The deubiquitinating enzyme cylindromatosis (CYLD) is a recently discovered MALT1 target that can negatively regulate NF-κB activation. Here, we show that low expression of CYLD is associated with inferior prognosis of diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients, and that chronic BCR signaling propagates MALT1-mediated cleavage and, consequently, inactivation and rapid proteasomal degradation of CYLD. Ectopic overexpression of WT CYLD or a MALT1-cleavage resistant mutant of CYLD reduced phosphorylation of IκBα, repressed transcription of canonical NF-κB target genes and impaired growth of BCR-dependent lymphoma cell lines. Furthermore, silencing of CYLD expression rendered BCR-dependent lymphoma cell lines less sensitive to inhibition of NF-κΒ signaling and cell proliferation by BCR pathway inhibitors, e.g., the BTK inhibitor ibrutinib, indicating that these effects are partially mediated by CYLD. Taken together, our findings identify an important role for MALT1-mediated CYLD cleavage in BCR signaling, NF-κB activation and cell proliferation, which provides novel insights into the underlying molecular mechanisms and clinical potential of inhibitors of MALT1 and ubiquitination enzymes as promising therapeutics for DLBCL, MCL and potentially other B-cell malignancies.


Asunto(s)
Enzima Desubiquitinante CYLD , Linfoma de Células B Grandes Difuso , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , FN-kappa B , Humanos , Caspasas/metabolismo , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Linfoma de Células B Grandes Difuso/patología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos B , Transducción de Señal/fisiología
5.
J Hematol Oncol ; 14(1): 11, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436043

RESUMEN

BACKGROUND: The survival and proliferation of multiple myeloma (MM) cells in the bone marrow (BM) critically depend on interaction with stromal cells expressing the chemokine CXCL12. CXCL12 regulates the homing to the BM niche by mediating the transendothelial migration and adhesion/retention of the MM cells. The gamma isoform of CXCL12 (CXCL12γ) has been reported to be highly expressed in mouse BM and to show enhanced biological activity compared to the 'common' CXCL12α isoform, mediated by its unique extended C-terminal domain, which binds heparan sulfate proteoglycans (HSPGs) with an extraordinary high affinity. Here, we investigated the expression of CXCL12γ in human BM and studied its functional role in the interaction of MM cells with BM stromal cells (BMSCs). METHODS: We assessed CXCL12γ mRNA and protein expression by human BMSCs using qPCR, flow cytometry, and immunohistochemistry. CRISPR-Cas9 was employed to delete CXCL12γ and the heparan sulfate (HS) co-polymerase EXT1 in BMSCs. To study the functional roles of BMSC-derived CXCL12γ and HSPGs in the interaction of MM cells with BMSCs cells, MM cell lines and primary MM cells were co-cultured with BMSCs. RESULTS: We observed that CXCL12γ is expressed in situ by reticular stromal cells in both normal and MM BM, as well as by primary BMSC isolates and BMSC lines. Importantly, upon secretion, CXCL12γ, unlike the CXCL12α isoform, was retained on the surface of BMSCs. This membrane retention of CXCL12γ is HSPG mediated, since it was completely annulated by CRISPR-Cas9-mediated deletion of the HS co-polymerase EXT1. CXCL12γ expressed by BMSCs and membrane-retained by HSPGs supported robust adhesion of MM cells to the BMSCs. Specific genetic deletion of either CXCL12γ or EXT1 significantly attenuated the ability of BMSCs to support MM cell adhesion and, in addition, impaired their capacity to protect MM cells from bortezomib-induced cell death. CONCLUSIONS: We show that CXCL12γ is expressed by human BMSCs and upon secretion is retained on their cell surface by HSPGs. The membrane-bound CXCL12γ controls adhesion of MM cells to the stromal niche and mediates drug resistance. These findings designate CXCL12γ and associated HSPGs as partners in mediating MM-niche interaction and as potential therapeutic targets in MM.


Asunto(s)
Adhesión Celular , Quimiocina CXCL12/metabolismo , Heparitina Sulfato/metabolismo , Mieloma Múltiple/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología
6.
Leukemia ; 35(3): 881-886, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32591642

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma subtype arising from naïve B cells. Although novel therapeutics have improved patient prognosis, drug resistance remains a key problem. Here, we show that the SRC-family tyrosine kinase hematopoietic cell kinase (HCK), which is primarily expressed in the hematopoietic lineage but not in mature B cells, is aberrantly expressed in MCL, and that high expression of HCK is associated with inferior prognosis of MCL patients. HCK expression is controlled by the toll-like receptor (TLR) adaptor protein MYD88 and can be enhanced by TLR agonists in MCL cell lines and primary MCL. In line with this, primary MCL with high HCK expression are enriched for a TLR-signaling pathway gene set. Silencing of HCK expression results in cell cycle arrest and apoptosis. Furthermore, HCK controls integrin-mediated adhesion of MCL cells to extracellular matrix and stromal cells. Taken together, our data indicate that TLR/MYD88-controlled aberrant expression of HCK plays a critical role in MCL proliferation and survival as well as in retention of the malignant cells in the growth- and survival-supporting lymphoid organ microenvironment, thereby contributing to lymphomagenesis. These novel insights provide a strong rationale for therapeutic targeting of HCK in MCL.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Linfoma de Células del Manto/patología , Proteínas Proto-Oncogénicas c-hck/metabolismo , Microambiente Tumoral , Biomarcadores de Tumor/genética , Humanos , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-hck/genética , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 113(15): 4128-33, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26951660

RESUMEN

Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that "oligo targeting" can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Proteína 2 Homóloga a MutS/genética , Mutagénesis , Oligonucleótidos/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...