Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404045, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874074

RESUMEN

The thiamine diphosphate (ThDP)-binding motif, characterized by the canonical GDG(X)24-27N sequence, is highly conserved among ThDP-dependent enzymes. We investigated a ThDP-dependent lyase (JanthE from Janthinobacterium sp. HH01) with an unusual cysteine (C458) replacing the first glycine of this motif. We found that JanthE has a high substrate promiscuity accepting long aliphatic α-keto acids as donors. Sterically hindered aromatic aldehydes or non-activated ketones are acceptor substrates, giving access to a variety of secondary and tertiary alcohols as carboligation products. The crystal structure solved at a resolution of 1.9 Å reveals that C458 is not primarily involved in the cofactor binding as previously thought for the canonical glycine. Instead, it coordinates methionine 406, thus ensuring the integrity of the active site and the enzyme activity. We further determined the long-sought genuine tetrahedral intermediates formed with pyruvate and 2-oxo-butyrate in the pre-decarboxylation states and unravel atomic details for their stabilization in the active site. Collectively, we unravel an unexpected role for the first residue of the ThDP-binding motif and unlock a family of lyases able to perform valuable carboligation reactions.

2.
Sci Rep ; 13(1): 10153, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349508

RESUMEN

Clostridium species are re-emerging as biotechnological workhorses for industrial acetone-butanol-ethanol production. This re-emergence is largely due to advances in fermentation technologies but also due to advances in genome engineering and re-programming of the native metabolism. Several genome engineering techniques have been developed including the development of numerous CRISPR-Cas tools. Here, we expanded the CRISPR-Cas toolbox and developed a CRISPR-Cas12a genome engineering tool in Clostridium beijerinckii NCIMB 8052. By controlling the expression of FnCas12a with the xylose-inducible promoter, we achieved efficient (25-100%) single-gene knockout of five C. beijerinckii NCIMB 8052 genes (spo0A, upp, Cbei_1291, Cbei_3238, Cbei_3832). Moreover, we achieved multiplex genome engineering by simultaneously knocking out the spo0A and upp genes in a single step with an efficiency of 18%. Finally, we showed that the spacer sequence and position in the CRISPR array can affect the editing efficiency outcome.


Asunto(s)
Clostridium beijerinckii , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Butanoles/metabolismo , 1-Butanol/metabolismo , Edición Génica/métodos
3.
Front Microbiol ; 11: 579844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193208

RESUMEN

Esters are important flavor and fragrance compounds that are present in many food and beverage products. Many of these esters are produced by yeasts and bacteria during fermentation. While ester production in yeasts through the alcohol acyl transferase reaction has been thoroughly investigated, ester production through alcoholysis has been completely neglected. Here, we further analyze the catalytic capacity of the yeast Eat1 enzyme and demonstrate that it also has alcoholysis and thiolysis activities. Eat1 can perform alcoholysis in an aqueous environment in vitro, accepting a wide range of alcohols (C2-C10) but only a small range of acyl donors (C2-C4). We show that alcoholysis occurs in vivo in several Crabtree negative yeast species but also in engineered Saccharomyces cerevisiae strains that overexpress Eat1 homologs. The alcoholysis activity of Eat1 was also used to upgrade ethyl esters to butyl esters in vivo by overexpressing Eat1 in Clostridium beijerinckii. Approximately 17 mM of butyl acetate and 0.3 mM of butyl butyrate could be produced following our approach. Remarkably, the in vitro alcoholysis activity is 445 times higher than the previously described alcohol acyl transferase activity. Thus, alcoholysis is likely to affect the ester generation, both quantitatively and qualitatively, in food and beverage production processes. Moreover, mastering the alcoholysis activity of Eat1 may give rise to the production of novel food and beverage products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA