Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 31(5): 1094-1112, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30914498

RESUMEN

The plant endoplasmic reticulum-Golgi apparatus is the site of synthesis, assembly, and trafficking of all noncellulosic polysaccharides, proteoglycans, and proteins destined for the cell wall. As grass species make cell walls distinct from those of dicots and noncommelinid monocots, it has been assumed that the differences in cell-wall composition stem from differences in biosynthetic capacities of their respective Golgi. However, immunosorbence-based screens and carbohydrate linkage analysis of polysaccharides in Golgi membranes, enriched by flotation centrifugation from etiolated coleoptiles of maize (Zea mays) and leaves of Arabidopsis (Arabidopsis thaliana), showed that arabinogalactan-proteins and arabinans represent substantial portions of the Golgi-resident polysaccharides not typically found in high abundance in cell walls of either species. Further, hemicelluloses accumulated in Golgi at levels that contrasted with those found in their respective cell walls, with xyloglucans enriched in maize Golgi, and xylans enriched in Arabidopsis. Consistent with this finding, maize Golgi membranes isolated by flotation centrifugation and enriched further by free-flow electrophoresis, yielded >200 proteins known to function in the biosynthesis and metabolism of cell-wall polysaccharides common to all angiosperms, and not just those specific to cell-wall type. We propose that the distinctive compositions of grass primary cell walls compared with other angiosperms result from differential gating or metabolism of secreted polysaccharides post-Golgi by an as-yet unknown mechanism, and not necessarily by differential expression of genes encoding specific synthase complexes.


Asunto(s)
Glicómica , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Transporte Biológico , Pared Celular/metabolismo , Pared Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Magnoliopsida/genética , Magnoliopsida/ultraestructura , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/ultraestructura
2.
Methods Mol Biol ; 1511: 213-232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27730614

RESUMEN

The cytosol is at the core of cellular metabolism and contains many important metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. Despite the importance of this matrix, few attempts have sought to specifically enrich this compartment from plants. Although a variety of biochemical pathways and signaling cascades pass through the cytosol, much of the focus has usually been targeted at the reactions that occur within membrane-bound organelles of the plant cell. In this chapter, we outline a method for the enrichment of the cytosol from rice suspension cell cultures which includes sample preparation and enrichment as well as validation using immunoblotting and fluorescence-tagged proteins.


Asunto(s)
Fraccionamiento Celular/métodos , Citosol/química , Cebollas/química , Oryza/química , Células Vegetales/química , Proteínas de Plantas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomarcadores/metabolismo , Western Blotting , Técnicas de Cultivo de Célula , Fraccionamiento Celular/instrumentación , Medios de Cultivo/química , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas , Cebollas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Proteínas de Plantas/metabolismo
3.
Plant Cell ; 28(12): 2991-3004, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27895225

RESUMEN

Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ∼25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Celulosa/metabolismo , Glicoesfingolípidos/metabolismo , Esfingolípidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-27486577

RESUMEN

Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.

5.
BMC Plant Biol ; 16: 90, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27091363

RESUMEN

BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS: T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS: Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Pectinas/biosíntesis , Polen/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fertilidad/genética , Galactanos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genotipo , Glicosiltransferasas/genética , Aparato de Golgi/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo
6.
J Proteome Res ; 15(3): 900-13, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26781341

RESUMEN

The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Proteoma/aislamiento & purificación , Plantones/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Electroforesis , Electroforesis en Gel Bidimensional , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Vesículas Transportadoras/metabolismo
7.
Plant Cell ; 27(12): 3397-409, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26672069

RESUMEN

Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.


Asunto(s)
Arabidopsis/genética , Ácido Ascórbico/metabolismo , Guanosina Difosfato Manosa/metabolismo , Mananos/metabolismo , Nucleotidiltransferasas/metabolismo , Vitaminas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Nucleotidiltransferasas/genética , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo
8.
Biochem J ; 472(1): 43-54, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338998

RESUMEN

Plant apyrases are nucleoside triphosphate (NTP) diphosphohydrolases (NTPDases) and have been implicated in an array of functions within the plant including the regulation of extracellular ATP. Arabidopsis encodes a family of seven membrane bound apyrases (AtAPY1-7) that comprise three distinct clades, all of which contain the five conserved apyrase domains. With the exception of AtAPY1 and AtAPY2, the biochemical and the sub-cellular characterization of the other members are currently unavailable. In this research, we have shown all seven Arabidopsis apyrases localize to internal membranes comprising the cis-Golgi, endoplasmic reticulum (ER) and endosome, indicating an endo-apyrase classification for the entire family. In addition, all members, with the exception of AtAPY7, can function as endo-apyrases by complementing a yeast double mutant (Δynd1Δgda1) which lacks apyrase activity. Interestingly, complementation of the mutant yeast using well characterized human apyrases could only be accomplished by using a functional ER endo-apyrase (NTPDase6), but not the ecto-apyrase (NTPDase1). Furthermore, the substrate specificity analysis for the Arabidopsis apyrases AtAPY1-6 indicated that each member has a distinct set of preferred substrates covering various NDPs (nucleoside diphosphates) and NTPs. Combining the biochemical analysis and sub-cellular localization of the Arabidopsis apyrases family, the data suggest their possible roles in regulating endomembrane NDP/NMP (nucleoside monophosphate) homoeostasis.


Asunto(s)
Apirasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Homeostasis , Membranas Intracelulares/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Apirasa/clasificación , Apirasa/genética , Arabidopsis , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Familia de Multigenes , Filogenia , Plantas Modificadas Genéticamente , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Proteomics ; 15(13): 2286-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25677556

RESUMEN

The cost-effective production of biofuels from lignocellulosic material will likely require manipulation of plant biomass, specifically cell walls. The North American native prairie grass Panicum virgatum (switchgrass) is seen as a potential biofuel crop with an array of genetic resources currently being developed. We have characterized the endomembrane proteome of switchgrass coleoptiles to provide additional information to the switchgrass community. In total, we identified 1750 unique proteins from two biological replicates. These data have been deposited in the ProteomeXchange with the identifier PXD001351 (http://proteomecentral.proteomexchange.org/dataset/PXD001351).


Asunto(s)
Panicum/genética , Panicum/metabolismo , Proteoma/metabolismo
10.
Plant Biotechnol J ; 13(7): 903-14, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25586315

RESUMEN

Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both ß-1,3 and ß-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.


Asunto(s)
Pared Celular/metabolismo , Glucanos/metabolismo , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/metabolismo , Envejecimiento/fisiología , Pared Celular/química , Plantas Modificadas Genéticamente/genética
11.
Plant J ; 79(3): 517-29, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24905498

RESUMEN

The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate-Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell-wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full-length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/.


Asunto(s)
Genómica , Glicosiltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo
12.
Anal Biochem ; 448: 14-22, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24299991

RESUMEN

Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques.


Asunto(s)
Carbohidratos/análisis , Cromatografía Líquida de Alta Presión , Nucleótidos/análisis , Espectrometría de Masas en Tándem , Arabidopsis/química , Arabidopsis/metabolismo , Carbohidratos/química , Pared Celular/química , Pared Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Oryza/química , Oryza/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo
13.
Plant Cell Physiol ; 53(11): 1913-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23034877

RESUMEN

Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.


Asunto(s)
Apirasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Aparato de Golgi/enzimología , Apirasa/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Pared Celular/genética , Pared Celular/metabolismo , Activación Enzimática , Galactosa/metabolismo , Prueba de Complementación Genética , Glicosilación , Aparato de Golgi/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanosina Difosfato/metabolismo , Membranas Intracelulares/metabolismo , Microsomas/enzimología , Regiones Promotoras Genéticas , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Uridina Difosfato/metabolismo
14.
PLoS One ; 7(12): e52820, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300786

RESUMEN

Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.


Asunto(s)
Biocombustibles , Eucalyptus/química , Madera/química , Acacia/química , Pared Celular/química , Cromatografía por Intercambio Iónico , Eucalyptus/citología , Hidrólisis , Lignina/química , Monosacáridos/química , Monosacáridos/aislamiento & purificación , Análisis Multivariante , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Árboles , Madera/citología , Difracción de Rayos X
15.
Plant Methods ; 7: 26, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21851585

RESUMEN

We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...