Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294329

RESUMEN

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Asunto(s)
Arabidopsis , Pennisetum , Sequías , Pennisetum/genética , Glutarredoxinas , Estudio de Asociación del Genoma Completo , Productos Agrícolas
2.
Microbiome ; 12(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167150

RESUMEN

BACKGROUND: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS: Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS: This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.


Asunto(s)
Microbiota , Pennisetum , Pennisetum/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Plantas/microbiología , Exudados y Transudados , Microbiología del Suelo , Rizosfera
3.
J Exp Bot ; 75(2): 584-593, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37549338

RESUMEN

Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.


Asunto(s)
Resistencia a la Sequía , Suelo , Raíces de Plantas , Sequías , Productos Agrícolas
4.
PLoS One ; 18(9): e0291385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682975

RESUMEN

COI1-mediated perception of jasmonate is critical for plant development and responses to environmental stresses. Monocots such as rice have two groups of COI genes due to gene duplication: OsCOI1a and OsCOI1b that are functionally equivalent to the dicotyledons COI1 and OsCOI2 whose function remains unclear. In order to assess the function of OsCOI2 and its functional redundancy with COI1 genes, we developed a series of rice mutants in the 3 genes OsCOI1a, OsCOI1b and OsCOI2 by CRISPR Cas9-mediated editing and characterized their phenotype and responses to jasmonate. Characterization of OsCOI2 uncovered its important roles in root, leaf and flower development. In particular, we show that crown root growth inhibition by jasmonate relies on OsCOI2 and not on OsCOI1a nor on OsCOI1b, revealing a major function for the non-canonical OsCOI2 in jasmonate-dependent control of rice root growth. Collectively, these results point to a specialized function of OsCOI2 in the regulation of plant development in rice and indicate that sub-functionalisation of jasmonate receptors has occurred in the monocot phylum.


Asunto(s)
Oryza , Oryza/genética , Ciclopentanos , Duplicación de Gen , Inhibición Psicológica
5.
Environ Microbiome ; 18(1): 42, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198640

RESUMEN

BACKGROUND: Rhizosphere microbial communities are important components of the soil-plant continuum in paddy field ecosystems. These rhizosphere communities contribute to nutrient cycling and rice productivity. The use of fertilizers is a common agricultural practice in rice paddy fields. However, the long-term impact of the fertilizers usage on the rhizosphere microbial communities at different rice developmental stages remains poorly investigated. Here, we examined the effects of long-term (27 years) N and NPK-fertilization on bacterial and archaeal community inhabiting the rice rhizosphere at three developmental stages (tillering, panicle initiation and booting) in the Senegal River Delta. RESULTS: We found that the effect of long-term inorganic fertilization on rhizosphere microbial communities varied with the rice developmental stage, and between microbial communities in their response to N and NPK-fertilization. The microbial communities inhabiting the rice rhizosphere at panicle initiation appear to be more sensitive to long-term inorganic fertilization than those at tillering and booting stages. However, the effect of developmental stage on microbial sensitivity to long-term inorganic fertilization was more pronounced for bacterial than archaeal community. Furthermore, our data reveal dynamics of bacteria and archaea co-occurrence patterns in the rice rhizosphere, with differentiated bacterial and archaeal pivotal roles in the microbial inter-kingdom networks across developmental stages. CONCLUSIONS: Our study brings new insights on rhizosphere bacteria and archaea co-occurrence and the long-term inorganic fertilization impact on these communities across developmental stages in field-grown rice. It would help in developing strategies for the successful manipulation of microbial communities to improve rice yields.

6.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740490

RESUMEN

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Plantas , Cambio Climático , Efecto Invernadero
8.
Plant J ; 111(2): 546-566, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35596715

RESUMEN

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.


Asunto(s)
Oryza , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Exp Bot ; 73(15): 5279-5293, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35429274

RESUMEN

Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.


Asunto(s)
Oryza , Estudio de Asociación del Genoma Completo , Oryza/genética , Fitomejoramiento , Transpiración de Plantas/fisiología , Agua
10.
J Exp Bot ; 73(11): 3496-3510, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35224628

RESUMEN

Lateral root organogenesis is a key process in the development of a plant's root system and its adaptation to the environment. During lateral root formation, an early phase of cell proliferation first produces a four-cell-layered primordium, and only from this stage onwards is a root meristem-like structure, expressing root stem cell niche marker genes, being established in the developing organ. Previous studies reported that the gene regulatory network controlling lateral root formation is organized into two subnetworks whose mutual inhibition may contribute to organ patterning. PUCHI encodes an AP2/ERF transcription factor expressed early during lateral root primordium development and required for correct lateral root formation. To dissect the molecular events occurring during this early phase, we generated time-series transcriptomic datasets profiling lateral root development in puchi-1 mutants and wild types. Transcriptomic and reporter analyses revealed that meristem-related genes were expressed ectopically at early stages of lateral root formation in puchi-1 mutants. We conclude that, consistent with the inhibition of genetic modules contributing to lateral root development, PUCHI represses ectopic establishment of meristematic cell identities at early stages of organ development. These findings shed light on gene network properties that orchestrate correct timing and patterning during lateral root formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Meristema , Raíces de Plantas , Factores de Transcripción/metabolismo
11.
Plant Cell Environ ; 45(3): 637-649, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35037274

RESUMEN

In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.


Asunto(s)
Micorrizas , Agricultura , Fertilizantes , Fenotipo , Agua
12.
Sci Rep ; 12(1): 207, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997057

RESUMEN

Fungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


Asunto(s)
Productos Agrícolas/microbiología , Hongos/crecimiento & desarrollo , Micobioma , Pennisetum/microbiología , Raíces de Plantas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , Hongos/genética , Concentración de Iones de Hidrógeno , Pennisetum/crecimiento & desarrollo , Pennisetum/metabolismo , Fósforo/química , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Senegal , Suelo/química
14.
Methods Mol Biol ; 2395: 79-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34822150

RESUMEN

Postembryonic organogenesis is a critical component in plant root and shoot development and its adaptation to the environment. Decades of scientific analyses have yielded a wealth of experimental data about the cellular and molecular processes orchestrating the postembryonic formation of new shoot and root organs. Among these, distribution and signaling of the plant hormone auxin play a prominent role. Systems biology approaches are now particularly interesting to study the emerging properties of such complex and dynamic regulatory networks. To fully explore the precise kinetics of these organogenesis processes, efficient protocols for the synchronized induction of shoot and root organogenesis are extremely valuable. Two protocols for shoot and root organ induction are detailed.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Meristema/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Brotes de la Planta/metabolismo , Plantas , Transducción de Señal
15.
Methods Mol Biol ; 2395: 247-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34822157

RESUMEN

A method has been developed to measure root intersection density (RID) on a trench-profile in field conditions. Here we describe how 2D spatial distribution mapping of RID can be processed and converted into root length density (RLD) and root distances (ARD) using a new freeware named RACINE2.2. The software also allows a simple modeling of potential root extraction ratio in the soil (PRER). The software contains models calculating RLD, ARD, and PRER from RID for several crops (maize, sorghum, sugarcane, rice, pearl millet, pineapple, eucalyptus). Models may be changed or added into RACINE2.2. RLD, ARD, and PRER are calculated for each spatial unit and can be used to generate 2D maps using RACINE2.2. Data can be exported to a spreadsheet or a surface mapping software for further analysis. It is also possible to import data into RACINE2.2 from a spreadsheet. This application thus makes studies about root-soil interactions, root growth, and root uptake easier. It opens new avenues to characterize root systems to improve root water and nutrient uptake in field conditions.


Asunto(s)
Raíces de Plantas , Programas Informáticos , Suelo , Agua , Zea mays
17.
PLoS One ; 15(11): e0238736, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211715

RESUMEN

Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.


Asunto(s)
Oryza/genética , Raíces de Plantas/genética , Transcriptoma/genética , Pared Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Rayos Láser , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética , Transcripción Genética/genética
18.
PLoS One ; 15(10): e0233481, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33001997

RESUMEN

Pearl millet is a key cereal for food security in arid and semi-arid regions but its yield is increasingly threatened by water stress. Physiological mechanisms relating to conservation of soil water or increased water use efficiency can alleviate that stress. Aquaporins (AQP) are water channels that mediate root water transport, thereby influencing plant hydraulics, transpiration and soil water conservation. However, AQP remain largely uncharacterized in pearl millet. Here, we studied AQP function in root water transport in two pearl millet lines contrasting for water use efficiency (WUE). We observed that these lines also contrasted for root hydraulic conductivity (Lpr) and AQP contribution to Lpr. The line with lower WUE showed significantly higher AQP contribution to Lpr. To investigate AQP isoforms contributing to Lpr, we developed genomic approaches to first identify the entire AQP family in pearl millet and secondly, characterize the plasma membrane intrinsic proteins (PIP) gene expression profile. We identified and annotated 33 AQP genes in pearl millet, among which ten encoded PIP isoforms. PgPIP1-3 and PgPIP1-4 were significantly more expressed in the line showing lower WUE, higher Lpr and higher AQP contribution to Lpr. Overall, our study suggests that the PIP1 AQP family are the main regulators of Lpr in pearl millet and may possibly be associated with mechanisms associated to whole plant water use. This study paves the way for further investigations on AQP functions in pearl millet hydraulics and adaptation to environmental stresses.


Asunto(s)
Acuaporinas , Pennisetum , Raíces de Plantas/fisiología , Adaptación Fisiológica , Acuaporinas/genética , Acuaporinas/metabolismo , Genes de Plantas , Genoma de Planta , Pennisetum/genética , Pennisetum/fisiología , Estrés Fisiológico , Transcriptoma , Agua/metabolismo
19.
Plant J ; 103(3): 951-964, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32324287

RESUMEN

Plants forage soil for water and nutrients, whose distribution is patchy and often dynamic. To improve their foraging activities, plants have evolved mechanisms to modify the physicochemical properties and microbial communities of the rhizosphere, i.e. the soil compartment under the influence of the roots. This dynamic interplay in root-soil-microbiome interactions creates emerging properties that impact plant nutrition and health. As a consequence, the rhizosphere can be considered an extended root phenotype, a manifestation of the effects of plant genes on their environment inside and/or outside of the organism. Here, we review current understanding of how plants shape the rhizosphere and the benefits it confers to plant fitness. We discuss future research challenges and how applying their solutions in crops will enable us to harvest the benefits of the extended root phenotype.


Asunto(s)
Raíces de Plantas/fisiología , Rizosfera , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Plantas/anatomía & histología , Plantas/microbiología , Microbiología del Suelo
20.
Methods Mol Biol ; 2085: 117-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31734921

RESUMEN

Phytohormones play a crucial role in regulating plant developmental processes. Among them, ethylene and jasmonate are known to be involved in plant defense responses to a wide range of biotic stresses as their levels increase with pathogen infection. In addition, these two phytohormones have been shown to inhibit plant nodulation in legumes. Here, exogenous salicylic acid (SA), jasmonate acid (JA), and ethephon (ET) were applied to the root system of Casuarina glauca plants before Frankia inoculation, in order to analyze their effects on the establishment of actinorhizal symbiosis. This protocol further describes how to identify putative ortholog genes involved in ethylene and jasmonate biosynthesis and/or signaling pathways in plant, using the Arabidopsis Information Resource (TAIR), Legume Information System (LIS), and Genevestigator databases. The expression of these genes in response to the bacterium Frankia was analyzed using the gene atlas for Casuarina-Frankia symbiosis (SESAM web site).


Asunto(s)
Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Ácido Salicílico/metabolismo , Simbiosis , Biología Computacional/métodos , Ciclopentanos/farmacología , Bases de Datos Genéticas , Relación Dosis-Respuesta a Droga , Etilenos/farmacología , Frankia/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Oxilipinas/farmacología , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA