Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2810: 29-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926271

RESUMEN

Baculovirus-mediated gene expression in mammalian cells, BacMam, is a useful alternative to transient transfection for recombinant protein production in various types of mammalian cell lines. We decided to establish BacMam in our lab in order to streamline our workflows for gene expression in insect and mammalian cells, as it is straightforward to parallelize the baculovirus generation for both types of eukaryotic cells. This chapter provides a step-by-step description of the protocols we use for the generation of the recombinant BacMam viruses, the transduction of mammalian cell cultures, and optimization of the protein production conditions through small-scale expression and purification tests.


Asunto(s)
Baculoviridae , Expresión Génica , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Humanos , Vectores Genéticos/genética , Línea Celular , Células Sf9 , Transducción Genética/métodos , Transfección/métodos , Técnicas de Cultivo de Célula/métodos
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719749

RESUMEN

The tripartite motif-containing protein 66 (TRIM66, also known as TIF1-delta) is a PHD-Bromo-containing protein primarily expressed in post-meiotic male germ cells known as spermatids. Biophysical assays showed that the TRIM66 PHD-Bromodomain binds to H3 N-terminus only when lysine 4 is unmethylated. We addressed TRIM66's role in reproduction by loss-of-function genetics in the mouse. Males homozygous for Trim66-null mutations produced functional spermatozoa. Round spermatids lacking TRIM66 up-regulated a network of genes involved in histone acetylation and H3K4 methylation. Profiling of H3K4me3 patterns in the sperm produced by the Trim66-null mutant showed minor alterations below statistical significance. Unexpectedly, Trim66-null males, but not females, sired pups overweight at birth, hence revealing that Trim66 mutations cause a paternal effect phenotype.


Asunto(s)
Histonas , Animales , Masculino , Ratones , Femenino , Histonas/metabolismo , Ratones Noqueados , Espermátides/metabolismo , Espermatozoides/metabolismo , Espermatogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fenotipo , Herencia Paterna/genética , Mutación , Metilación , Ratones Endogámicos C57BL , Acetilación
3.
Nat Struct Mol Biol ; 31(3): 476-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38297086

RESUMEN

Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.


Asunto(s)
Proteínas de Drosophila , Cinesinas , Animales , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Tropomiosina/metabolismo , Drosophila/genética , Microtúbulos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37989319

RESUMEN

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Asunto(s)
Proteínas de Drosophila , ARN Helicasas , Animales , Humanos , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis , ARN/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/genética , Factores de Transcripción/metabolismo
5.
mSystems ; 8(3): e0107322, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37184670

RESUMEN

The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifiers PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined is a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection. IMPORTANCE With the currently available antibiotics, the treatment of TB takes months. The slow response to treatment is caused by antibiotic tolerance, which is especially common among bacteria that form biofilms. Such biofilms are composed of bacterial cells surrounded by the extracellular matrix. Both the matrix and the dormant lifestyle of the bacterial cells are thought to hinder the efficacy of antibiotics. To be able to develop faster-acting treatments against TB, the biofilm forms of mycobacteria deserve specific attention. In this work, we characterize the protein composition of Mmr biofilms in bacterial cultures and in mycobacteria extracted from infected adult zebrafish. We identify abundant surface-exposed targets and develop the first sybodies that bind to mycobacterial biofilms. As nanobodies can be linked to other therapeutic compounds, in the future, they can provide means to target therapies to biofilms.


Asunto(s)
Mycobacterium marinum , Anticuerpos de Dominio Único , Tuberculosis , Animales , Proteómica , Pez Cebra , Antibacterianos , Tuberculosis/microbiología , Biopelículas
6.
Nat Struct Mol Biol ; 30(5): 670-677, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081320

RESUMEN

The challenge of nascent chain folding at the ribosome is met by the conserved ribosome-associated complex (RAC), which forms a chaperone triad with the Hsp70 protein Ssb in fungi, and consists of the non-canonical Hsp70 Ssz1 and the J domain protein Zuotin (Zuo1). Here we determine cryo-EM structures of Chaetomium thermophilum RAC bound to 80S ribosomes. RAC adopts two distinct conformations accommodating continuous ribosomal rotation by a flexible lever arm. It is held together by a tight interaction between the Ssz1 substrate-binding domain and the Zuo1 N terminus, and additional contacts between the Ssz1 nucleotide-binding domain and Zuo1 J- and Zuo1 homology domains, which form a rigid unit. The Zuo1 HPD motif conserved in J-proteins is masked in a non-canonical interaction by the Ssz1 nucleotide-binding domain, and allows the positioning of Ssb for activation by Zuo1. Overall, we provide the basis for understanding how RAC cooperates with Ssb in a dynamic nascent chain interaction and protein folding.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/química , Ribosomas/metabolismo , Nucleótidos/metabolismo , Chaperonas Moleculares/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142717

RESUMEN

Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific differences, as it is inactive in yeast but active in higher eukaryotes. Together with NatA, it engages in NatE complex formation for cotranslational acetylation. Here, we report Naa50 homologs from the filamentous fungi Chaetomium thermophilum and Neurospora crassa with significant N- and C-terminal extensions to the conserved GNAT domain. Structural and biochemical analyses show that CtNaa50 shares the GNAT structure and substrate specificity with other homologs. However, in contrast to previously analyzed Naa50 proteins, it does not form NatE. The elongated N-terminus increases Naa50 thermostability and binds to dynein light chain protein 1, while our data suggest that conserved positive patches in the C-terminus allow for ribosome binding independent of NatA. Our study provides new insights into the many facets of Naa50 and highlights the diversification of NATs during evolution.


Asunto(s)
Acetiltransferasa E N-Terminal , Acetiltransferasas N-Terminal , Acetilación , Acetiltransferasas/metabolismo , Dineínas/metabolismo , Humanos , Acetiltransferasa E N-Terminal/química , Acetiltransferasas N-Terminal/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Sci Adv ; 8(24): eabn6153, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704578

RESUMEN

In humans, the Huntingtin yeast partner K (HYPK) binds to the ribosome-associated Nα-acetyltransferase A (NatA) complex that acetylates ~40% of the proteome in humans and Arabidopsis thaliana. However, the relevance of HsHYPK for determining the human N-acetylome is unclear. Here, we identify the AtHYPK protein as the first in vivo regulator of NatA activity in plants. AtHYPK physically interacts with the ribosome-anchoring subunit of NatA and promotes Nα-terminal acetylation of diverse NatA substrates. Loss-of-AtHYPK mutants are remarkably resistant to drought stress and strongly resemble the phenotype of NatA-depleted plants. The ectopic expression of HsHYPK rescues this phenotype. Combined transcriptomics, proteomics, and N-terminomics unravel that HYPK impairs plant metabolism and development, predominantly by regulating NatA activity. We demonstrate that HYPK is a critical regulator of global proteostasis by facilitating masking of the recently identified nonAc-X2/N-degron. This N-degron targets many nonacetylated NatA substrates for degradation by the ubiquitin-proteasome system.


Asunto(s)
Arabidopsis , Acetiltransferasa A N-Terminal , Acetilación , Acetiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo , Proteostasis
9.
Nat Commun ; 13(1): 476, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079002

RESUMEN

Ribosomes are complex and highly conserved ribonucleoprotein assemblies catalyzing protein biosynthesis in every organism. Here we present high-resolution cryo-EM structures of the 80S ribosome from a thermophilic fungus in two rotational states, which due to increased 80S stability provide a number of mechanistic details of eukaryotic translation. We identify a universally conserved 'nested base-triple knot' in the 26S rRNA at the polypeptide tunnel exit with a bulged-out nucleotide that likely serves as an adaptable element for nascent chain containment and handover. We visualize the structure and dynamics of the ribosome protective factor Stm1 upon ribosomal 40S head swiveling. We describe the structural impact of a unique and essential m1acp3 Ψ 18S rRNA hyper-modification embracing the anticodon wobble-position for eukaryotic tRNA and mRNA translocation. We complete the eEF2-GTPase switch cycle describing the GDP-bound post-hydrolysis state. Taken together, our data and their integration into the structural landscape of 80S ribosomes furthers our understanding of protein biogenesis.


Asunto(s)
Chaetomium/metabolismo , Microscopía por Crioelectrón/métodos , Factor 2 de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Ribosómico/química , Ribosomas/química , Ribosomas/metabolismo , Chaetomium/química , Factor 2 de Elongación Peptídica/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo
10.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329466

RESUMEN

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/ultraestructura , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/ultraestructura , Proteínas de Unión al ARN/ultraestructura , Dispersión del Ángulo Pequeño , Factores de Transcripción/ultraestructura , Difracción de Rayos X
11.
Traffic ; 22(8): 274-283, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101314

RESUMEN

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Asunto(s)
Trypanosoma brucei brucei , Glicoproteínas Variantes de Superficie de Trypanosoma , Membrana Celular , Glicosilfosfatidilinositoles , Glicoproteínas de Membrana , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
12.
Genes Dev ; 35(13-14): 976-991, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34140355

RESUMEN

Kinesin-1 carries cargos including proteins, RNAs, vesicles, and pathogens over long distances within cells. The mechanochemical cycle of kinesins is well described, but how they establish cargo specificity is not fully understood. Transport of oskar mRNA to the posterior pole of the Drosophila oocyte is mediated by Drosophila kinesin-1, also called kinesin heavy chain (Khc), and a putative cargo adaptor, the atypical tropomyosin, aTm1. How the proteins cooperate in mRNA transport is unknown. Here, we present the high-resolution crystal structure of a Khc-aTm1 complex. The proteins form a tripartite coiled coil comprising two in-register Khc chains and one aTm1 chain, in antiparallel orientation. We show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, and mutational analysis confirms the importance of this interaction for mRNA transport in vivo. Furthermore, we demonstrate that Khc binds RNA directly and that it does so via its alternative cargo binding domain, which forms a positively charged joint surface with aTm1, as well as through its adjacent auxiliary microtubule binding domain. Finally, we show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors.


Asunto(s)
Proteínas de Drosophila , Cinesinas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Tropomiosina/metabolismo
13.
Structure ; 29(5): 413-425.e5, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33400917

RESUMEN

The majority of eukaryotic proteins is modified by N-terminal acetylation, which plays a fundamental role in protein homeostasis, localization, and complex formation. N-terminal acetyltransferases (NATs) mainly act co-translationally on newly synthesized proteins at the ribosomal tunnel exit. NatA is the major NAT consisting of Naa10 catalytic and Naa15 auxiliary subunits, and with Naa50 forms the NatE complex. Naa50 has recently been identified in Arabidopsis thaliana and is important for plant development and stress response regulation. Here, we determined high-resolution X-ray crystal structures of AtNaa50 in complex with AcCoA and a bisubstrate analog. We characterized its substrate specificity, determined its enzymatic parameters, and identified functionally important residues. Even though Naa50 is conserved among species, we highlight differences between Arabidopsis and yeast, where Naa50 is catalytically inactive but binds CoA conjugates. Our study provides insights into Naa50 conservation, species-specific adaptations, and serves as a basis for further studies of NATs in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Acetiltransferasa E N-Terminal/química , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Simulación del Acoplamiento Molecular , Acetiltransferasa E N-Terminal/metabolismo , Unión Proteica , Especificidad por Sustrato
14.
Commun Biol ; 4(1): 2, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398031

RESUMEN

N-terminal acetylation is one of the most common protein modifications in eukaryotes and is carried out by N-terminal acetyltransferases (NATs). It plays important roles in protein homeostasis, localization, and interactions and is linked to various human diseases. NatB, one of the major co-translationally active NATs, is composed of the catalytic subunit Naa20 and the auxiliary subunit Naa25, and acetylates about 20% of the proteome. Here we show that NatB substrate specificity and catalytic mechanism are conserved among eukaryotes, and that Naa20 alone is able to acetylate NatB substrates in vitro. We show that Naa25 increases the Naa20 substrate affinity, and identify residues important for peptide binding and acetylation activity. We present the first Naa20 crystal structure in complex with the competitive inhibitor CoA-Ac-MDEL. Our findings demonstrate how Naa20 binds its substrates in the absence of Naa25 and support prospective endeavors to derive specific NAT inhibitors for drug development.


Asunto(s)
Chaetomium/enzimología , Acetiltransferasa B N-Terminal/metabolismo , Chaetomium/genética , Proteínas Fúngicas/metabolismo , Estructura Molecular , Acetiltransferasa B N-Terminal/genética , Especificidad por Sustrato
15.
Structure ; 29(1): 15-28.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33053321

RESUMEN

The SRP54 GTPase is a key component of co-translational protein targeting by the signal recognition particle (SRP). Point mutations in SRP54 have been recently shown to lead to a form of severe congenital neutropenia displaying symptoms overlapping with those of Shwachman-Diamond syndrome. The phenotype includes severe neutropenia, exocrine pancreatic deficiency, and neurodevelopmental as well as skeletal disorders. Using a combination of X-ray crystallography, hydrogen-deuterium exchange coupled to mass spectrometry and complementary biochemical and biophysical methods, we reveal extensive structural defects in three disease-causing SRP54 variants resulting in critical protein destabilization. GTP binding is mostly abolished as a consequence of an altered GTPase core. The mutations located in conserved sequence fingerprints of SRP54 eliminate targeting complex formation with the SRP receptor as demonstrated in yeast and human cells. These specific defects critically influence the entire SRP pathway, thereby causing this life-threatening disease.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Mutación , Neutropenia/congénito , Partícula de Reconocimiento de Señal/química , Sitios de Unión , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Neutropenia/genética , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
16.
New Phytol ; 228(2): 554-569, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32548857

RESUMEN

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.


Asunto(s)
Arabidopsis , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Estrés Salino
17.
Nat Commun ; 11(1): 1504, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198371

RESUMEN

The conserved ribosome-associated complex (RAC) consisting of Zuo1 (Hsp40) and Ssz1 (non-canonical Hsp70) acts together with the ribosome-bound Hsp70 chaperone Ssb in de novo protein folding at the ribosomal tunnel exit. Current models suggest that the function of Ssz1 is confined to the support of Zuo1, however, it is not known whether RAC by itself serves as a chaperone for nascent chains. Here we show that, via its rudimentary substrate binding domain (SBD), Ssz1 directly binds to emerging nascent chains prior to Ssb. Structural and biochemical analyses identify a conserved LP-motif at the Zuo1 N-terminus forming a polyproline-II helix, which binds to the Ssz1-SBD as a pseudo-substrate. The LP-motif competes with nascent chain binding to the Ssz1-SBD and modulates nascent chain transfer. The combined data indicate that Ssz1 is an active chaperone optimized for transient, low-affinity substrate binding, which ensures the flux of nascent chains through RAC/Ssb.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas HSP70 de Choque Térmico/química , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
18.
Nat Commun ; 11(1): 776, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034140

RESUMEN

Human Ebp1 is a member of the proliferation-associated 2G4 (PA2G4) family and plays an important role in cancer regulation. Ebp1 shares the methionine aminopeptidase (MetAP) fold and binds to mature 80S ribosomes for translational control. Here, we present a cryo-EM single particle analysis reconstruction of Ebp1 bound to non-translating human 80S ribosomes at a resolution range from 3.3 to ~8 Å. Ebp1 blocks the tunnel exit with major interactions to the general uL23/uL29 docking site for nascent chain-associated factors complemented by eukaryote-specific eL19 and rRNA helix H59. H59 is defined as dynamic adaptor undergoing significant remodeling upon Ebp1 binding. Ebp1 recruits rRNA expansion segment ES27L to the tunnel exit via specific interactions with rRNA consensus sequences. The Ebp1-ribosome complex serves as a template for MetAP binding and provides insights into the structural principles for spatial coordination of co-translational events and molecular triage at the ribosomal tunnel exit.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas/química
19.
Plant Physiol ; 182(2): 792-806, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31744933

RESUMEN

N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Acetiltransferasa B N-Terminal/metabolismo , Plantones/metabolismo , Estrés Fisiológico/genética , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Biología Computacional , Perfilación de la Expresión Génica , Ontología de Genes , Técnicas In Vitro , Mutagénesis Insercional , Acetiltransferasa B N-Terminal/genética , Presión Osmótica , Proteoma/genética , Proteoma/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico/efectos de la radiación
20.
Structure ; 26(11): 1440-1450.e5, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146170

RESUMEN

The Escherichia coli signal recognition particle (SRP) receptor, FtsY, plays a fundamental role in co-translational targeting of membrane proteins via the SRP pathway. Efficient targeting relies on membrane interaction of FtsY and heterodimerization with the SRP protein Ffh, which is driven by detachment of α helix (αN1) in FtsY. Here we show that apart from the heterodimer, FtsY forms a nucleotide-dependent homodimer on the membrane, and upon αN1 removal also in solution. Homodimerization triggers reciprocal stimulation of GTP hydrolysis and occurs in vivo. Biochemical characterization together with integrative modeling suggests that the homodimer employs the same interface as the heterodimer. Structure determination of FtsY NG+1 with GMPPNP shows that a dimerization-induced conformational switch of the γ-phosphate is conserved in Escherichia coli, filling an important gap in SRP GTPase activation. Our findings add to the current understanding of SRP GTPases and may challenge previous studies that did not consider homodimerization of FtsY.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Sitios de Unión , Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Partícula de Reconocimiento de Señal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...