Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881224

RESUMEN

BACKGROUND: Defects in GNAO1, the gene encoding the major neuronal G-protein Gαo, are related to neurodevelopmental disorders, epilepsy, and movement disorders. Nevertheless, there is a poor understanding of how molecular mechanisms explain the different phenotypes. OBJECTIVES: We aimed to analyze the clinical phenotype and the molecular characterization of GNAO1-related disorders. METHODS: Patients were recruited in collaboration with the Spanish GNAO1 Association. For patient phenotyping, direct clinical evaluation, analysis of homemade-videos, and an online questionnaire completed by families were analyzed. We studied Gαo cellular expression, the interactions of the partner proteins, and binding to guanosine triphosphate (GTP) and G-protein-coupled receptors (GPCRs). RESULTS: Eighteen patients with GNAO1 genetic defects had a complex neurodevelopmental disorder, epilepsy, central hypotonia, and movement disorders. Eleven patients showed neurological deterioration, recurrent hyperkinetic crisis with partial recovery, and secondary complications leading to death in three cases. Deep brain stimulation improved hyperkinetic crisis, but had inconsistent benefits in dystonia. The molecular defects caused by pathogenic Gαo were aberrant GTP binding and hydrolysis activities, an inability to interact with cellular binding partners, and reduced coupling to GPCRs. Decreased localization of Gαo in the plasma membrane was correlated with the phenotype of "developmental and epileptic encephalopathy 17." We observed a genotype-phenotype correlation, pathogenic variants in position 203 were related to developmental and epileptic encephalopathy, whereas those in position 209 were related to neurodevelopmental disorder with involuntary movements. Milder phenotypes were associated with other molecular defects such as del.16q12.2q21 and I344del. CONCLUSION: We highlight the complexity of the motor phenotype, which is characterized by fluctuations throughout the day, and hyperkinetic crisis with a distinct post-hyperkinetic crisis state. We confirm a molecular-based genotype-phenotype correlation for specific variants. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 39(3): 601-606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358016

RESUMEN

BACKGROUND: Patients carrying pathogenic variants in GNAO1 present a phenotypic spectrum ranging from severe early-onset epileptic encephalopathy and developmental delay to mild adolescent/adult-onset dystonia. Genotype-phenotype correlation and molecular mechanisms underlying the disease remain understudied. METHODS: We analyzed the clinical course of a child carrying the novel GNAO1 mutation c.38T>C;p.Leu13Pro, and structural, biochemical, and cellular properties of the corresponding mutant Gαo-GNAO1-encoded protein-alongside the related mutation c.68T>C;p.Leu23Pro. RESULTS: The main clinical feature was parkinsonism with bradykinesia and rigidity, unlike the hyperkinetic movement disorder commonly associated with GNAO1 mutations. The Leu ➔ Pro substitutions have no impact on enzymatic activity or overall folding of Gαo but uniquely destabilize the N-terminal α-helix, blocking formation of the heterotrimeric G-protein and disabling activation by G-protein-coupled receptors. CONCLUSIONS: Our study defines a parkinsonism phenotype within the spectrum of GNAO1 disorders and suggests a genotype-phenotype correlation by GNAO1 mutations targeting the N-terminal α-helix of Gαo. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Trastornos Parkinsonianos , Adolescente , Niño , Humanos , Estudios de Asociación Genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Trastornos del Movimiento/genética , Mutación/genética , Trastornos Parkinsonianos/genética , Conformación Proteica en Hélice alfa
3.
Cells ; 12(20)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887313

RESUMEN

De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.


Asunto(s)
Encefalopatías , Humanos , Niño , Mutación/genética , Proteínas de Unión al GTP/metabolismo , Iones/metabolismo , Guanosina Trifosfato , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
5.
Med ; 4(5): 311-325.e7, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37001522

RESUMEN

BACKGROUND: The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants. METHODS: In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery. FINDINGS: We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gßγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged. CONCLUSIONS: This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo. FUNDING: This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.


Asunto(s)
Proteínas de Unión al GTP , Ensayos Analíticos de Alto Rendimiento , Humanos , Niño , Evaluación Preclínica de Medicamentos , Mutación/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
6.
Sci Adv ; 8(40): eabn9350, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206333

RESUMEN

De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...