RESUMEN
Klebsiella pneumoniae has emerged as a global health threat due to its role in the spread of antimicrobial resistance and because it is a frequent cause of hospital-acquired infections and neonatal sepsis. Capsular and lipopolysaccharide (LPS) O-antigen polysaccharide surface antigens are major immunogens that are useful for strain classification and are candidates for vaccine development. We have developed real-time PCR reagents for molecular serotyping, subtyping, and quantitation of the most prevalent LPS O-antigen types (i.e., O1, O2, O3, and O5) of Klebsiella pneumoniae. We describe two applications for this O-typing assay: for screening culture isolates and for direct typing of Klebsiella pneumoniae present in stool samples. We find 100% concordance between the results of the O-typing assay and whole-genome sequencing of 81 culture isolates, and >90% agreement in O-typing performed directly on specimens of human stool, with disagreement arising primarily from a lack of sensitivity of the culture-based comparator method. Additionally, we find evidence for mixed O-type populations at varying levels of abundance in direct tests of stool from a hospitalized patient population. Taken together, these results demonstrate that this novel O-typing assay can be a useful tool for K. pneumoniae epidemiologic and vaccine studies.IMPORTANCEKlebsiella pneumoniae is an important opportunistic pathogen. The gastrointestinal (GI) tract is the primary reservoir of K. pneumoniae in humans, and GI carriage is believed to be a prerequisite for invasive infection. Knowledge about the dynamics and duration of GI carriage has been hampered by the lack of tools suitable for detection and strain discrimination. Real-time PCR is particularly suited to the higher-throughput workflows used in population-based studies, which are needed to improve our understanding of carriage dynamics and the factors influencing K. pneumoniae colonization.
Asunto(s)
Heces , Infecciones por Klebsiella , Klebsiella pneumoniae , Antígenos O , Reacción en Cadena en Tiempo Real de la Polimerasa , Serogrupo , Serotipificación , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/inmunología , Antígenos O/genética , Antígenos O/inmunología , Antígenos O/análisis , Humanos , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Heces/microbiología , Serotipificación/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Secuenciación Completa del GenomaRESUMEN
Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from 10 cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than coinfection with divergent V. cholerae O1 lineages. The amount of single-nucleotide variation decreased from vomit to stool in four patients, increased in two, and remained unchanged in four. The variation in gene presence/absence decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract. IMPORTANCE: Vibrio cholerae O1, the bacterium that causes cholera, is ingested in contaminated food or water and then colonizes the upper small intestine and is excreted in stool. Shed V. cholerae genomes from stool are usually studied, but V. cholerae isolated from vomit may be more representative of where V. cholerae colonizes in the upper intestinal epithelium. V. cholerae may experience bottlenecks, or large reductions in bacterial population sizes and genetic diversity, as it passes through the gut. Passage through the gut may select for distinct V. cholerae mutants that are adapted for survival and gut colonization. We did not find strong evidence for such adaptive mutations, and instead observed that passage through the gut results in modest reductions in V. cholerae genetic diversity, and only in some patients. These results fill a gap in our understanding of the V. cholerae life cycle, transmission, and evolution.
Asunto(s)
Cólera , Heces , Tracto Gastrointestinal , Variación Genética , Genoma Bacteriano , Vibrio cholerae O1 , Humanos , Cólera/microbiología , Vibrio cholerae O1/genética , Vibrio cholerae O1/aislamiento & purificación , Heces/microbiología , Tracto Gastrointestinal/microbiología , Genoma Bacteriano/genética , Toxina del Cólera/genética , Diarrea/microbiología , FilogeniaRESUMEN
BACKGROUND: Travel-related strategies to reduce the spread of COVID-19 evolved rapidly in response to changes in the understanding of SARS-CoV-2 and newly available tools for prevention, diagnosis, and treatment. Modeling is an important methodology to investigate the range of outcomes that could occur from different disease containment strategies. METHODS: We examined 43 articles published from December 2019 through September 2022 that used modeling to evaluate travel-related COVID-19 containment strategies. We extracted and synthesized data regarding study objectives, methods, outcomes, populations, settings, strategies, and costs. We used a standardized approach to evaluate each analysis according to 26 criteria for modeling quality and rigor. RESULTS: The most frequent approaches included compartmental modeling to examine quarantine, isolation, or testing. Early in the pandemic, the goal was to prevent travel-related COVID-19 cases with a focus on individual-level outcomes and assessing strategies such as travel restrictions, quarantine without testing, social distancing, and on-arrival PCR testing. After the development of diagnostic tests and vaccines, modeling studies projected population-level outcomes and investigated these tools to limit COVID-19 spread. Very few published studies included rapid antigen screening strategies, costs, explicit model calibration, or critical evaluation of the modeling approaches. CONCLUSION: Future modeling analyses should leverage open-source data, improve the transparency of modeling methods, incorporate newly available prevention, diagnostics, and treatments, and include costs and cost-effectiveness so that modeling analyses can be informative to address future SARS-CoV-2 variants of concern and other emerging infectious diseases (e.g., mpox and Ebola) for travel-related health policies.
RESUMEN
Background: Klebsiella pneumonia (Kpn) is the fourth leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive Kpn. In this study, we sought to determine whether the O-specific polysaccharide (OPS) antigen, a vaccine candidate, is immunogenic in humans with Kpn bloodstream infection (BSI). We also sought to define the cross-reactivity of human antibody responses among structurally related Kpn OPS subtypes and to assess the impact of capsule production on OPS-targeted antibody binding and function. Methods: We measured plasma antibody responses to OPS (and MrkA, a fimbrial protein) in a cohort of patients with Kpn BSI and compared these with controls, including a cohort of healthy individuals and a cohort of individuals with Enterococcus BSI. We performed flow cytometry to measure the impact of Kpn capsule production on whole cell antibody binding and complement deposition, utilizing patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates. Findings: We enrolled 69 patients with Kpn BSI. Common OPS serotypes accounted for 57/69 (83%) of infections. OPS was highly immunogenic in patients with Kpn BSI, and peak OPS-IgG antibody responses in patients were 10 to 30-fold higher than antibody levels detected in healthy controls, depending on the serotype. There was significant cross-reactivity among structurally similar OPS subtypes, including the O1v1/O1v2, O2v1/O2v2 and O3/O3b subtypes. Physiological amounts of capsule produced by both hyperencapsulated and non-hyperencapsulated Kpn significantly inhibited OPS-targeted antibody binding and function. Interpretation: OPS was highly immunogenic in patients with Kpn BSI, supporting its potential as a candidate vaccine antigen. The strong cross-reactivity observed between similar OPS subtypes in humans with Kpn BSI suggests that it may not be necessary to include all subtypes in an OPS-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with OPS antibody binding. This may limit the effectiveness of vaccines that exclusively target OPS. Funding: National Institute of Allergy and Infectious Diseases at the National Institutes of Health. Research in Context: Evidence before this study: Despite the potential of O-specific polysaccharide (OPS) as a vaccine antigen against Klebsiella pneumoniae (Kpn), the immunogenicity of OPS in humans remains largely unstudied, creating a significant knowledge gap with regard to vaccine development. A search of PubMed for publications up to March 18, 2024, using the terms " Klebsiella pneumoniae " and "O-specific polysaccharide" or "O-antigen" or "lipopolysaccharide" revealed no prior studies addressing OPS antibody responses in humans with Kpn bloodstream infections (BSI). One prior study 1 evaluated antibody response to a single lipopolysaccharide (which contains one subtype of OPS) in humans with invasive Kpn infection; however, in this study OPS typing of the infecting strains and target antigen were not described. Added value of this study: Our investigation into OPS immunogenicity in a human cohort marks a significant advance. Analyzing plasma antibody responses in 69 patients with Kpn BSI, we found OPS to be broadly immunogenic across all the types and subtypes examined, and there was significant cross-reactivity among structurally related OPS antigens. We also demonstrated that Kpn capsule production inhibit OPS antibody binding and the activation of complement on the bacterial surface, even in classical Kpn strains expressing lower levels of capsule.Implications of all the available evidence: While the immunogenicity and broad cross-reactivity of OPS in humans with Kpn BSI suggests it is a promising vaccine candidate, the obstruction of OPS antibody binding and engagement by physiologic levels of Kpn capsule underscores the potential limitations of an exclusively OPS-antigen based vaccine for Kpn. Our study provides insights for the strategic development of vaccines aimed at combating Kpn infections, an important antimicrobial resistant pathogen.
RESUMEN
This JAMA Insights in the Climate Change and Health series discusses the importance of clinicians having awareness of changes in the geographic range, seasonality, and intensity of transmission of infectious diseases to help them diagnose, treat, and prevent these diseases.
Asunto(s)
Cambio Climático , Enfermedades Transmisibles , Humanos , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/epidemiología , Procesos Climáticos , Clima Extremo , Incendios Forestales , Gases de Efecto Invernadero/efectos adversos , Combustibles Fósiles/efectos adversos , Vectores de Enfermedades , Zoonosis/epidemiología , Micosis/epidemiología , Enfermedades Transmitidas por el Agua/epidemiología , Educación Médica , Política PúblicaRESUMEN
Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that the V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from ten cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than co-infection with divergent V. cholerae O1 lineages. The number of single nucleotide variants decreased between vomit and stool in four patients, increased in two, and remained unchanged in four. The number of genes encoded in the V. cholerae genome decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract.
RESUMEN
Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.
Asunto(s)
Vacunas contra el Cólera , Cólera , Vibrio cholerae O1 , Adulto , Niño , Humanos , Adolescente , Preescolar , Anciano , Recién Nacido , Cólera/prevención & control , Toxina del Cólera , Antígenos O , Inmunoglobulina M , Anticuerpos Antibacterianos , Inmunoglobulina A , Vacunación , Formación de Anticuerpos , Inmunoglobulina GRESUMEN
BACKGROUND: The clinical and microbial factors associated with Klebsiella pneumoniae bloodstream infections (BSIs) are not well characterized. Prior studies have focused on highly resistant or hypervirulent isolates, limiting our understanding of K. pneumoniae strains that commonly cause BSI. We performed a record review and whole-genome sequencing to investigate the clinical characteristics, bacterial diversity, determinants of antimicrobial resistance, and risk factors for in-hospital death in a cohort of patients with K. pneumoniae BSI. METHODS: We identified 562 patients at Massachusetts General Hospital with K. pneumoniae BSIs between 2016 and 2022. We collected data on comorbid conditions, infection source, clinical outcomes, and antibiotic resistance and performed whole-genome sequencing on 108 sequential BSI isolates from 2021 to 2022. RESULTS: Intra-abdominal infection was the most common source of infection accounting for 34% of all BSIs. A respiratory tract source accounted for 6% of BSIs but was associated with a higher in-hospital mortality rate (adjusted odds ratio, 5.4 [95% confidence interval, 2.2-12.8]; P < .001 for comparison with other sources). Resistance to the first antibiotic prescribed was also associated with a higher risk of death (adjusted odds ratio, 5.2 [95% confidence interval, 2.2-12.4]; P < .001). BSI isolates were genetically diverse, and no clusters of epidemiologically and genetically linked cases were observed. Virulence factors associated with invasiveness were observed at a low prevalence, although an unexpected association between O-antigen type and the source of infection was found. CONCLUSIONS: These observations demonstrate the versatility of K. pneumoniae as an opportunistic pathogen and highlight the need for new approaches for surveillance and the rapid identification of patients with invasive antimicrobial-resistant K. pneumoniae infection.
Asunto(s)
Bacteriemia , Infección Hospitalaria , Infecciones por Klebsiella , Sepsis , Humanos , Klebsiella pneumoniae , Infección Hospitalaria/epidemiología , Mortalidad Hospitalaria , Bacteriemia/microbiología , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sepsis/tratamiento farmacológico , GenómicaRESUMEN
International travel can cause new illness or exacerbate existing conditions. Because primary care providers are frequent sources of health advice to travelers, they should be familiar with destination-specific disease risks, be knowledgeable about travel and routine vaccines, be prepared to prescribe chemoprophylaxis and self-treatment regimens, and be aware of travel medicine resources. Primary care providers should recognize travelers who would benefit from referral to a specialized travel clinic for evaluation. Those requiring yellow fever vaccination, immunocompromised hosts, pregnant persons, persons with multiple comorbid conditions, or travelers with complex itineraries may warrant specialty referral.
Asunto(s)
Medicina , Medicina del Viajero , Femenino , Embarazo , Humanos , Instituciones de Atención Ambulatoria , Concienciación , QuimioprevenciónRESUMEN
BACKGROUND: Culture-based studies have shown that acquisition of extended-spectrum ß-lactamase-producing Enterobacterales is common during international travel; however, little is known about the role of the gut microbiome before and during travel, nor about acquisition of other antimicrobial-resistant organisms. We aimed to identify (1) whether the gut microbiome provided colonisation resistance against antimicrobial-resistant organism acquisition, (2) the effect of travel and travel behaviours on the gut microbiome, and (3) the scale and global heterogeneity of antimicrobial-resistant organism acquisition. METHODS: In this metagenomic analysis, participants were recruited at three US travel clinics (Boston, MA; New York, NY; and Salt Lake City, UT) before international travel. Participants had to travel internationally between Dec 8, 2017, and April 30, 2019, and have DNA extractions for stool samples both before and after travel for inclusion. Participants were excluded if they had at least one low coverage sample (<1 million read pairs). Stool samples were collected at home before and after travel, sent to a clinical microbiology laboratory to be screened for three target antimicrobial-resistant organisms (extended-spectrum ß-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales, and mcr-mediated colistin-resistant Enterobacterales), and underwent DNA extraction and shotgun metagenomic sequencing. We profiled metagenomes for taxonomic composition, antibiotic-resistant gene content, and characterised the Escherichia coli population at the strain level. We analysed pre-travel samples to identify the gut microbiome risk factors associated with acquisition of the three targeted antimicrobial resistant organisms. Pre-travel and post-travel samples were compared to identify microbiome and resistome perturbation and E coli strain acquisition associated with travel. FINDINGS: A total of 368 individuals travelled between the required dates, and 296 had DNA extractions available for both before and after travel. 29 travellers were excluded as they had at least one low coverage sample, leaving a final group of 267 participants. We observed a perturbation of the gut microbiota, characterised by a significant depletion of microbial diversity and enrichment of the Enterobacteriaceae family. Metagenomic strain tracking confirmed that 67% of travellers acquired new strains of E coli during travel that were phylogenetically distinct from their pre-travel strains. We observed widespread enrichment of antibiotic-resistant genes in the gut, with a median 15% (95% CI 10-20, p<1 × 10-10) increase in burden (reads per kilobase per million reads). This increase included antibiotic-resistant genes previously classified as threats to public health, which were 56% (95% CI 36-91, p=2 × 10-11) higher in abundance after travel than before. Fluoroquinolone antibiotic-resistant genes were aquired by 97 (54%) of 181 travellers with no detected pre-travel carriage. Although we found that visiting friends or relatives, travel to south Asia, and eating uncooked vegetables were risk factors for acquisition of the three targeted antimicrobial resistant organisms, we did not observe an association between the pre-travel microbiome structure and travel-related antimicrobial-resistant organism acquisition. INTERPRETATION: This work highlights a scale of E coli and antimicrobial-resistant organism acquisition by US travellers not apparent from previous culture-based studies, and suggests that strategies to control antimicrobial-resistant organisms addressing international traveller behaviour, rather than modulating the gut microbiome, could be worthwhile. FUNDING: US Centers for Disease Control and Prevention and National Institute of Allergy and Infectious Diseases.
Asunto(s)
Escherichia coli , Microbioma Gastrointestinal , Estados Unidos , Humanos , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Viaje , Metagenoma , Enfermedad Relacionada con los Viajes , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana , beta-Lactamasas/genética , ADNRESUMEN
RATIONALE FOR REVIEW: This review aims to summarize the transmission patterns of influenza, its seasonality in different parts of the globe, air travel- and cruise ship-related influenza infections and interventions to reduce transmission. KEY FINDINGS: The seasonality of influenza varies globally, with peak periods occurring mainly between October and April in the northern hemisphere (NH) and between April and October in the southern hemisphere (SH) in temperate climate zones. However, influenza seasonality is significantly more variable in the tropics. Influenza is one of the most common travel-related, vaccine-preventable diseases and can be contracted during travel, such as during a cruise or through air travel. Additionally, travellers can come into contact with people from regions with ongoing influenza transmission. Current influenza immunization schedules in the NH and SH leave individuals susceptible during their respective spring and summer months if they travel to the other hemisphere during that time. CONCLUSIONS/RECOMMENDATIONS: The differences in influenza seasonality between hemispheres have substantial implications for the effectiveness of influenza vaccination of travellers. Health care providers should be aware of influenza activity when patients report travel plans, and they should provide alerts and advise on prevention, diagnostic and treatment options. To mitigate the risk of travel-related influenza, interventions include antivirals for self-treatment (in combination with the use of rapid self-tests), extending the shelf life of influenza vaccines to enable immunization during the summer months for international travellers and allowing access to the influenza vaccine used in the opposite hemisphere as a travel-related vaccine. With the currently available vaccines, the most important preventive measure involves optimizing the seasonal influenza vaccination. It is also imperative that influenza is recognized as a travel-related illness among both travellers and health care professionals.
Asunto(s)
Viaje en Avión , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Vacunación , Esquemas de Inmunización , Enfermedad Relacionada con los Viajes , Estaciones del AñoRESUMEN
Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.
Asunto(s)
Antígenos de Grupos Sanguíneos , Vacunas contra el Cólera , Cólera , Vibrio cholerae O139 , Vibrio cholerae O1 , Humanos , Niño , Cólera/prevención & control , Antígenos O , Lipopolisacáridos , Bangladesh/epidemiología , Vacunas de Productos Inactivados , Anticuerpos Antibacterianos , Inmunoglobulina A , Inmunoglobulina M , VacunaciónRESUMEN
A bacterial species is considered to be intrinsically resistant to an antimicrobial when nearly all of the wild-type isolates (i.e., those without acquired resistance) exhibit minimum inhibitory concentration (MIC) values that are sufficiently high such that susceptibility testing is unnecessary, and that the antimicrobial should not be considered for therapy. Accordingly, knowledge of intrinsic resistance influences both the selection of treatment regimens and the approach to susceptibility testing in the clinical laboratory, where unexpected results also facilitate the recognition of microbial identification or susceptibility testing errors. Previously, limited data have suggested that Hafnia spp. may be intrinsically resistant to colistin. We evaluated the in vitro activity of colistin against 119 Hafniaceae that were isolated from human samples: 75 (63%) from routine clinical cultures and 44 (37%) from stool samples of travelers undergoing screening for antimicrobial resistant organisms. Broth microdilution colistin MICs were ≥4 µg/mL for 117 of 119 (98%) isolates. Whole-genome sequencing of 96 of the isolates demonstrated that the colistin-resistant phenotype was not lineage-specific. 2 of the 96 (2%) isolates harbored mobile colistin resistance genes. Compared to whole-genome sequencing, VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and VITEK 2 GN ID failed to consistently distinguish between Hafnia alvei, Hafnia paralvei, and Obesumbacterium proteus. In conclusion, using a reference antimicrobial susceptibility testing method and a genetically diverse collection of isolates, we found Hafnia spp. to be intrinsically resistant to colistin. The recognition of this phenotype will help inform rational approaches by which to perform antimicrobial susceptibility testing and therapy for patients with infections that are caused by Hafnia spp.
Asunto(s)
Antiinfecciosos , Hafnia , Humanos , Colistina/farmacología , Enterobacteriaceae , Hafnia/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacologíaRESUMEN
BACKGROUND: Extended spectrum beta-lactamase producing Enterobacterales (ESBL-PE) present a risk to public health by limiting the efficacy of multiple classes of beta-lactam antibiotics against infection. International travellers may acquire these organisms and identifying individuals at high risk of acquisition could help inform clinical treatment or prevention strategies. METHODS: We used data collected from a cohort of 528 international travellers enrolled in a multicentre US-based study to derive a clinical prediction rule (CPR) to identify travellers who developed ESBL-PE colonization, defined as those with new ESBL positivity in stool upon return to the United States. To select candidate features, we used data collected from pre-travel and post-travel questionnaires, alongside destination-specific data from external sources. We utilized LASSO regression for feature selection, followed by random forest or logistic regression modelling, to derive a CPR for ESBL acquisition. RESULTS: A CPR using machine learning and logistic regression on 10 features has an internally cross-validated area under the receiver operating characteristic curve (cvAUC) of 0.70 (95% confidence interval 0.69-0.71). We also demonstrate that a four-feature model performs similarly to the 10-feature model, with a cvAUC of 0.68 (95% confidence interval 0.67-0.69). This model uses traveller's diarrhoea, and antibiotics as treatment, destination country waste management rankings and destination regional probabilities as predictors. CONCLUSIONS: We demonstrate that by integrating traveller characteristics with destination-specific data, we could derive a CPR to identify those at highest risk of acquiring ESBL-PE during international travel.
Asunto(s)
Infecciones por Enterobacteriaceae , Humanos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Enterobacteriaceae , beta-Lactamas , Estudios Prospectivos , beta-Lactamasas , Factores de Riesgo , Antibacterianos/uso terapéuticoRESUMEN
BACKGROUND: Vibriocidal antibodies are currently the best characterised correlate of protection against cholera and are used to gauge immunogenicity in vaccine trials. Although other circulating antibody responses have been associated with a decreased risk of infection, the correlates of protection against cholera have not been comprehensively compared. We aimed to analyse antibody-mediated correlates of protection from both V cholerae infection and cholera-related diarrhoea. METHODS: We conducted a systems serology study that analysed 58 serum antibody biomarkers as correlates of protection against V cholerae O1 infection or diarrhoea. We used serum samples from two cohorts: household contacts of people with confirmed cholera in Dhaka, Bangladesh, and cholera-naive volunteers who were recruited at three centres in the USA, vaccinated with a single dose of CVD 103-HgR live oral cholera vaccine, and then challenged with V cholerae O1 El Tor Inaba strain N16961. We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. V cholerae infection was defined as having a positive stool culture result on days 2-7 or day 30 after enrolment of the household's index cholera case and, in the vaccine challenge cohort, was the development of symptomatic diarrhoea (defined as two or more loose stools of ≥200 mL each, or a single loose stool of ≥300 mL over a 48-h period). FINDINGS: In the household contact cohort (261 participants from 180 households), 20 (34%) of the 58 studied biomarkers were associated with protection against V cholerae infection. We identified serum antibody-dependent complement deposition targeting the O1 antigen as the most predictive correlate of protection from infection in the household contacts, whereas vibriocidal antibody titres ranked lower. A five-biomarker model predicted protection from V cholerae infection with a cross-validated area under the curve (cvAUC) of 79% (95% CI 73-85). This model also predicted protection against diarrhoea in unvaccinated volunteers challenged with V cholerae O1 after vaccination (n=67; area under the curve [AUC] 77%, 95% CI 64-90). Although a different five-biomarker model best predicted protection from the development of cholera diarrhoea in the challenged vaccinees (cvAUC 78%, 95% CI 66-91), this model did poorly at predicting protection against infection in the household contacts (AUC 60%, 52-67). INTERPRETATION: Several biomarkers predict protection better than vibriocidal titres. A model based on protection against infection among household contacts was predictive of protection against both infection and diarrhoeal illness in challenged vaccinees, suggesting that models based on observed conditions in a cholera-endemic population might be more likely to identify broadly applicable correlates of protection than models trained on single experimental settings. FUNDING: National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development, National Institutes of Health.
Asunto(s)
Cólera , Vibrio cholerae , Niño , Humanos , Cólera/epidemiología , Cólera/prevención & control , Anticuerpos Antibacterianos , Bangladesh/epidemiología , Diarrea/epidemiologíaRESUMEN
Recent technological and computational advances have made metagenomic assembly a viable approach to achieving high-resolution views of complex microbial communities. In previous benchmarking, short-read (SR) metagenomic assemblers had the highest accuracy, long-read (LR) assemblers generated the most contiguous sequences and hybrid (HY) assemblers balanced length and accuracy. However, no assessments have specifically compared the performance of these assemblers on low-abundance species, which include clinically relevant organisms in the gut. We generated semi-synthetic LR and SR datasets by spiking small and increasing amounts of Escherichia coli isolate reads into fecal metagenomes and, using different assemblers, examined E. coli contigs and the presence of antibiotic resistance genes (ARGs). For ARG assembly, although SR assemblers recovered more ARGs with high accuracy, even at low coverages, LR assemblies allowed for the placement of ARGs within longer, E. coli-specific contigs, thus pinpointing their taxonomic origin. HY assemblies identified resistance genes with high accuracy and had lower contiguity than LR assemblies. Each assembler type's strengths were maintained even when our isolate was spiked in with a competing strain, which fragmented and reduced the accuracy of all assemblies. For strain characterization and determining gene context, LR assembly is optimal, while for base-accurate gene identification, SR assemblers outperform other options. HY assembly offers contiguity and base accuracy, but requires generating data on multiple platforms, and may suffer high misassembly rates when strain diversity exists. Our results highlight the trade-offs associated with each approach for recovering low-abundance taxa, and that the optimal approach is goal-dependent.
Asunto(s)
Metagenoma , Microbiota , Análisis de Secuencia de ADN/métodos , Escherichia coli/genética , Microbiota/genética , Metagenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
BACKGROUND: Extensively drug-resistant (XDR) typhoid fever is a threat to travelers to Pakistan. We describe a multicontinental case series of travel-acquired XDR typhoid fever to demonstrate the global spread of the problem and encourage preventive interventions as well as appropriate empiric antimicrobial use. METHODS: Cases were extracted from the GeoSentinel database, microbiologic laboratory records of two large hospitals in Toronto, Canada, and by invitation to TropNet sites. All isolates were confirmed XDR Salmonella enterica serovar Typhi (Salmonella typhi), with resistance to ampicillin, ceftriaxone, ciprofloxacin and trimethoprim-sulfamethoxazole. RESULTS: Seventeen cases were identified in Canada (10), USA (2), Spain (2), Italy (1), Australia (1) and Norway (1). Patients under 18 years represented 71% (12/17) of cases, and all patients travelled to Pakistan to visit friends or relatives. Only one patient is known to have been vaccinated. Predominant symptoms were fever, abdominal pain, vomiting and diarrhoea. Antimicrobial therapy was started on Day 1 of presentation in 75% (12/16) of patients, and transition to a carbapenem or azithromycin occurred a median of 2 days after blood culture was drawn. Antimicrobial susceptibilities were consistent with the XDR S. typhi phenotype, and whole genome sequencing on three isolates confirmed their belonging to the XDR variant of the H58 clade. CONCLUSIONS: XDR typhoid fever is a particular risk for travelers to Pakistan, and empiric use of a carbapenem or azithromycin should be considered. Pre-travel typhoid vaccination and counseling are necessary and urgent interventions, especially for visiting friends and relatives travelers. Ongoing sentinel surveillance of XDR typhoid fever is needed to understand changing epidemiology.
Asunto(s)
Antiinfecciosos , Fiebre Tifoidea , Humanos , Fiebre Tifoidea/epidemiología , Viaje , Azitromicina , Antibacterianos , Salmonella typhi , Carbapenémicos , Pakistán/epidemiologíaRESUMEN
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS: All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥45 days after an initial positive test, with both tests between 14 March and 30 December 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS: Among 1569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present and was successful for 14/65 (22%) subjects. Six subjects had genomically supported reinfection, and 8 subjects had genomically supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically supported reinfections. CONCLUSIONS: Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.