Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Structure ; 32(2): 120-121, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306987

RESUMEN

In this issue of Structure, Hall et al.1 investigate the binding modes of anillin-like Mid1. During cytokinesis, Mid1 connects the contractile ring to the plasma membrane. Using computer simulations, the authors demonstrated how this connection is established via the L3 loop of the C2 domain.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citocinesis , Proteínas Contráctiles/metabolismo , Citoesqueleto de Actina/metabolismo
2.
J Biol Chem ; 300(3): 105717, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311178

RESUMEN

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.


Asunto(s)
Receptores AMPA , Humanos , Células HEK293 , Ligandos , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Receptores AMPA/genética , Receptores AMPA/metabolismo , Regulación Alostérica
3.
J Appl Crystallogr ; 56(Pt 4): 1287-1294, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555217

RESUMEN

Shape2SAS is a web application that allows researchers and students to build intuition about and understanding of small-angle scattering. It is available at https://somo.chem.utk.edu/shape2sas. The user defines a model of arbitrary shape by combining geometrical subunits, and Shape2SAS then calculates and displays the scattering intensity and the pair distance distribution, as well as a visualization of the user-defined shape. Simulated data with realistic noise are also generated. Here, it is demonstrated how Shape2SAS can calculate and display the different scattering patterns for various geometrical shapes, such as spheres and cylinders. It is also shown how the effect of structure factors can be visualized. Finally, it is indicated how multi-contrast particles can readily be generated, and how the calculated scattering may be used to validate and visualize analytical models generated in analysis software for fitting small-angle scattering data.

4.
Membranes (Basel) ; 13(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37103835

RESUMEN

Phosphatase and tensin homologue (PTEN) and SH2-containing inositol 5'-phosphatase 2 (SHIP2) are structurally and functionally similar. They both consist of a phosphatase (Ptase) domain and an adjacent C2 domain, and both proteins dephosphorylate phosphoinositol-tri(3,4,5)phosphate, PI(3,4,5)P3; PTEN at the 3-phophate and SHIP2 at the 5-phosphate. Therefore, they play pivotal roles in the PI3K/Akt pathway. Here, we investigate the role of the C2 domain in membrane interactions of PTEN and SHIP2, using molecular dynamics simulations and free energy calculations. It is generally accepted that for PTEN, the C2 domain interacts strongly with anionic lipids and therefore significantly contributes to membrane recruitment. In contrast, for the C2 domain in SHIP2, we previously found much weaker binding affinity for anionic membranes. Our simulations confirm the membrane anchor role of the C2 domain in PTEN, as well as its necessity for the Ptase domain in gaining its productive membrane-binding conformation. In contrast, we identified that the C2 domain in SHIP2 undertakes neither of these roles, which are generally proposed for C2 domains. Our data support a model in which the main role of the C2 domain in SHIP2 is to introduce allosteric interdomain changes that enhance catalytic activity of the Ptase domain.

5.
Langmuir ; 39(10): 3569-3579, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36854196

RESUMEN

Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.


Asunto(s)
Dimiristoilfosfatidilcolina , Membrana Dobles de Lípidos , Dimiristoilfosfatidilcolina/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Membrana Dobles de Lípidos/química , Maleatos/química , Polímeros/química , Proteínas de la Membrana/química , Colesterol/química
6.
ArXiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36713243

RESUMEN

Shape2SAS is a web application that allows researchers and students to build intuition and understanding of small-angle scattering. It is available at https://somo.chem.utk.edu/shape2sas. The user defines a model of arbitrary shape by combining geometrical subunits, and Shape2SAS then calculates and displays the scattering intensity, the pair distance distribution as well as a visualization of the user-defined shape. Simulated data with realistic noise are also generated. We demonstrate how Shape2SAS can calculate and display the different scattering patterns for various geometrical shapes, such as spheres and cylinders. We also demonstrate how the effect of structure factors can be visualized. Finally, we show how multi-contrast particles can readily be generated, and how the calculated scattering may be used to validate and visualize analytical models generated in analysis software for fitting small-angle scattering data.

7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897670

RESUMEN

Eukaryotic cells contain membranes with various curvatures, from the near-plane plasma membrane to the highly curved membranes of organelles, vesicles, and membrane protrusions. These curvatures are generated and sustained by curvature-inducing proteins, peptides, and lipids, and describing these mechanisms is an important scientific challenge. In addition to that, some molecules can sense membrane curvature and thereby be trafficked to specific locations. The description of curvature sensing is another fundamental challenge. Curved lipid membranes and their interplay with membrane-associated proteins can be investigated with molecular dynamics (MD) simulations. Various methods for simulating curved membranes with MD are discussed here, including tools for setting up simulation of vesicles and methods for sustaining membrane curvature. The latter are divided into methods that exploit scaffolding virtual beads, methods that use curvature-inducing molecules, and methods applying virtual forces. The variety of simulation tools allow researcher to closely match the conditions of experimental studies of membrane curvatures.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membranas/metabolismo , Proteínas/análisis
8.
Elife ; 112022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35129435

RESUMEN

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Transporte Biológico , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
9.
PLoS Comput Biol ; 17(9): e1008807, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34555023

RESUMEN

Early Endosomal Antigen 1 (EEA1) is a key protein in endosomal trafficking and is implicated in both autoimmune and neurological diseases. The C-terminal FYVE domain of EEA1 binds endosomal membranes, which contain phosphatidylinositol-3-phosphate (PI(3)P). Although it is known that FYVE binds PI(3)P specifically, it has not previously been described of how FYVE attaches and binds to endosomal membranes. In this study, we employed both coarse-grained (CG) and atomistic (AT) molecular dynamics (MD) simulations to determine how FYVE binds to PI(3)P-containing membranes. CG-MD showed that the dominant membrane binding mode resembles the crystal structure of EEA1 FYVE domain in complex with inositol-1,3-diphospate (PDB ID 1JOC). FYVE, which is a homodimer, binds the membrane via a hinge mechanism, where the C-terminus of one monomer first attaches to the membrane, followed by the C-terminus of the other monomer. The estimated total binding energy is ~70 kJ/mol, of which 50-60 kJ/mol stems from specific PI(3)P-interactions. By AT-MD, we could partition the binding mode into two types: (i) adhesion by electrostatic FYVE-PI(3)P interaction, and (ii) insertion of amphipathic loops. The AT simulations also demonstrated flexibility within the FYVE homodimer between the C-terminal heads and coiled-coil stem. This leads to a dynamic model whereby the 200 nm long coiled coil attached to the FYVE domain dimer can amplify local hinge-bending motions such that the Rab5-binding domain at the other end of the coiled coil can explore an area of 0.1 µm2 in the search for a second endosome with which to interact.


Asunto(s)
Proteínas de Transporte Vesicular/metabolismo , Sitios de Unión , Dimerización , Simulación de Dinámica Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Dominios Proteicos , Electricidad Estática , Proteínas de Transporte Vesicular/química
10.
Structure ; 29(10): 1200-1213.e2, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34081910

RESUMEN

C2 domains facilitate protein interactions with lipid bilayers in either a Ca2+-dependent or -independent manner. We used molecular dynamics (MD) simulations to explore six Ca2+-independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse-grained MD simulations these C2 domains formed transient interactions with zwitterionic bilayers, compared with longer-lived interactions with anionic bilayers containing phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back, or side of the ß sandwich, whereas type II C2 domains bound canonically, via the top loops. C2 domains interacted strongly with membranes containing PIP2, causing bound anionic lipids to cluster around the protein. Binding modes were refined via atomistic simulations. For PTEN and SHIP2, CG simulations of their phosphatase plus C2 domains with PIP2-containing bilayers were also performed, and the roles of the two domains in membrane localization compared. These studies establish a simulation protocol for membrane-recognition proteins.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Sitios de Unión , Calcio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rab3/química , Proteínas de Unión al GTP rab3/metabolismo
11.
FEBS J ; 288(3): 995-1007, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32543078

RESUMEN

Ionotropic glutamate receptors are ligand-gated ion channels governing neurotransmission in the central nervous system. Three major types of antagonists are known for the AMPA-type receptor GluA2: competitive, noncompetitive (i.e., negative allosteric modulators; NAMs) used for treatment of epilepsy, and uncompetitive antagonists. We here report a 4.65 Å resolution X-ray structure of GluA2, revealing that four molecules of the competitive antagonist ZK200775 and four molecules of the NAM GYKI53655 are capable of binding at the same time. Using negative stain electron microscopy, we show that GYKI53655 alone or ZK200775/GYKI53655 in combination predominantly results in compact receptor forms. The agonist AMPA provides a mixed population of compact and bulgy shapes of GluA2 not impacted by addition of GYKI53655. Taken together, this suggests that the two different mechanisms of antagonism that lead to channel closure are independent and that the distribution between bulgy and compact receptors primarily depends on the ligand bound in the glutamate binding site. DATABASE: The atomic coordinates and structure factors from the crystal structure determination have been deposited in the Protein Data Bank under accession code https://doi.org/10.2210/pdb6RUQ/pdb. The electron microscopy 3D reconstruction volumes have been deposited in EMDB (EMD-4875: Apo; EMD-4920: ZK200775/GYKI53655; EMD-4921: AMPA compact; EMD-4922: AMPA/GYKI53655 bulgy; EMD-4923: GYKI53655; EMD-4924: AMPA bulgy; EMD-4925: AMPA/GYKI53655 compact).


Asunto(s)
Benzodiazepinas/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , Organofosfonatos/metabolismo , Quinoxalinas/metabolismo , Receptores AMPA/metabolismo , Proteínas Recombinantes/metabolismo , Regulación Alostérica , Animales , Benzodiazepinas/química , Benzodiazepinas/farmacología , Cristalografía por Rayos X , Antagonistas de Aminoácidos Excitadores/química , Antagonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Organofosfonatos/química , Organofosfonatos/farmacología , Unión Proteica , Dominios Proteicos , Quinoxalinas/química , Quinoxalinas/farmacología , Ratas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Proteínas Recombinantes/química , Células Sf9 , Spodoptera
12.
Biochim Biophys Acta Biomembr ; 1863(1): 183495, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189719

RESUMEN

Apolipoproteins are vital to lipid metabolism and cholesterol transport in the human body. Here we present a structural study of the lipid-bound particles formed by ApoE3 in a full-length and a truncated version. The particles are formed with, respectively, POPC and DMPC and investigated by small-angle X-ray scattering and negative stain electron microscopy. We find that lipid-bound ApoE3 particles are elliptical, disc-shaped particles composed of a central lipid bilayer encircled by two amphipathic ApoE3 proteins. We went on to investigate a truncated form of ApoE3 containing only residue 80 to 255 (ApoE380-255), which is the central helical repeat segment of ApoE3. The lipid-bound ApoE380-255 particles are found to have the same morphology as the particles with full-length ApoE3. However, they are larger, and form more heterogeneous discoidal structures with four proteins per particle. This behavior is in contrast to ApoA1 where the highly similar helical repeat domain determines the size and stoichiometry of the formed particles both in the case of full-length and truncated ApoA1. Our data hence points towards different mechanisms for lipid bilayer structural modulation by ApoA1 and ApoE3 due to different roles of the non-repeat segments.


Asunto(s)
Apolipoproteína E3/química , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Humanos
13.
PLoS Comput Biol ; 16(4): e1007870, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32339173

RESUMEN

Many proteins contain multiple folded domains separated by flexible linkers, and the ability to describe the structure and conformational heterogeneity of such flexible systems pushes the limits of structural biology. Using the three-domain protein TIA-1 as an example, we here combine coarse-grained molecular dynamics simulations with previously measured small-angle scattering data to study the conformation of TIA-1 in solution. We show that while the coarse-grained potential (Martini) in itself leads to too compact conformations, increasing the strength of protein-water interactions results in ensembles that are in very good agreement with experiments. We show how these ensembles can be refined further using a Bayesian/Maximum Entropy approach, and examine the robustness to errors in the energy function. In particular we find that as long as the initial simulation is relatively good, reweighting against experiments is very robust. We also study the relative information in X-ray and neutron scattering experiments and find that refining against the SAXS experiments leads to improvement in the SANS data. Our results suggest a general strategy for studying the conformation of multi-domain proteins in solution that combines coarse-grained simulations with small-angle X-ray scattering data that are generally most easy to obtain. These results may in turn be used to design further small-angle neutron scattering experiments that exploit contrast variation through 1H/2H isotope substitutions.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Algoritmos , Biología Computacional , Neutrones , Conformación Proteica , Dominios Proteicos , Proteínas/análisis , Proteínas/química
14.
Prog Mol Biol Transl Sci ; 170: 123-176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32145944

RESUMEN

Molecular simulations and biophysical experiments can be used to provide independent and complementary insights into the molecular origin of biological processes. A particularly useful strategy is to use molecular simulations as a modeling tool to interpret experimental measurements, and to use experimental data to refine our biophysical models. Thus, explicit integration and synergy between molecular simulations and experiments is fundamental for furthering our understanding of biological processes. This is especially true in the case where discrepancies between measured and simulated observables emerge. In this chapter, we provide an overview of some of the core ideas behind methods that were developed to improve the consistency between experimental information and numerical predictions. We distinguish between situations where experiments are used to refine our understanding and models of specific systems, and situations where experiments are used more generally to refine transferable models. We discuss different philosophies and attempt to unify them in a single framework. Until now, such integration between experiments and simulations have mostly been applied to equilibrium data, and we discuss more recent developments aimed to analyze time-dependent or time-resolved data.


Asunto(s)
Simulación de Dinámica Molecular , Teorema de Bayes , Entropía , Cinética , Proteínas/química , ARN/química , Factores de Tiempo
15.
Biophys J ; 116(10): 1931-1940, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31053257

RESUMEN

The bacterial Sec translocon, SecYEG, associates with accessory proteins YidC and the SecDF-YajC subcomplex to form the bacterial holo-translocon (HTL). The HTL is a dynamic and flexible protein transport machine capable of coordinating protein secretion across the membrane and efficient lateral insertion of nascent membrane proteins. It has been hypothesized that a central lipid core facilitates the controlled passage of membrane proteins into the bilayer, ensuring the efficient formation of their native state. By performing small-angle neutron scattering on protein solubilized in "match-out" deuterated detergent, we have been able to interrogate a "naked" HTL complex, with the scattering contribution of the surrounding detergent micelle rendered invisible. Such an approach has allowed the confirmation of a lipid core within the HTL, which accommodates between 8 and 29 lipids. Coarse-grained molecular dynamics simulations of the HTL also demonstrate a dynamic, central pool of lipids. An opening at this lipid-rich region between YidC and the SecY lateral gate may provide an exit gateway for newly synthesized, correctly oriented, membrane protein helices, or even small bundles of helices, to emerge from the HTL.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Metabolismo de los Lípidos , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica
16.
IUCrJ ; 5(Pt 6): 780-793, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30443361

RESUMEN

The AMPA receptor GluA2 belongs to the family of ionotropic glutamate receptors, which are responsible for most of the fast excitatory neuronal signalling in the central nervous system. These receptors are important for memory and learning, but have also been associated with brain diseases such as Alzheimer's disease and epilepsy. Today, one drug is on the market for the treatment of epilepsy targeting AMPA receptors, i.e. a negative allosteric modulator of these receptors. Recently, crystal structures and cryo-electron microscopy (cryo-EM) structures of full-length GluA2 in the resting (apo), activated and desensitized states have been reported. Here, solution structures of full-length GluA2 are reported using small-angle neutron scattering (SANS) with a novel, fully matched-out detergent. The GluA2 solution structure was investigated in the resting state as well as in the presence of AMPA and of the negative allosteric modulator GYKI-53655. In solution and at neutral pH, the SANS data clearly indicate that GluA2 is in a compact form in the resting state. The solution structure resembles the crystal structure of GluA2 in the resting state, with an estimated maximum distance (D max) of 179 ± 11 Šand a radius of gyration (R g) of 61.9 ± 0.4 Å. An ab initio model of GluA2 in solution generated using DAMMIF clearly showed the individual domains, i.e. the extracellular N-terminal domains and ligand-binding domains as well as the transmembrane domain. Solution structures revealed that GluA2 remained in a compact form in the presence of AMPA or GYKI-53655. At acidic pH only, GluA2 in the presence of AMPA adopted a more open conformation of the extracellular part (estimated D max of 189 ± 5 Šand R g of 65.2 ± 0.5 Å), resembling the most open, desensitized class 3 cryo-EM structure of GluA2 in the presence of quisqualate. In conclusion, this methodological study may serve as an example for future SANS studies on membrane proteins.

17.
FEBS J ; 285(2): 357-371, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29178440

RESUMEN

A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron scattering length difference between hydrogen and deuterium. Individual hydrogen/deuterium levels of the detergent head and tail groups were achieved such that the formed micelles became effectively invisible in heavy water (D2 O) when investigated by neutrons. This way, only the signal from the membrane protein remained in the SANS data. We demonstrate that the method is not only generally applicable on five very different membrane proteins but also reveals subtle structural details about the sarco/endoplasmatic reticulum Ca2+ ATPase (SERCA). In all, the synthesis of isotope-substituted detergents makes solution structure determination of membrane proteins by SANS and subsequent data analysis available to nonspecialists.


Asunto(s)
Detergentes/química , Glucósidos/química , Maltosa/análogos & derivados , Proteínas de la Membrana/química , Difracción de Neutrones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Dispersión del Ángulo Pequeño , Maltosa/química , Micelas , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA