Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684889

RESUMEN

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Asunto(s)
Adenilil Ciclasas , Tejido Adiposo Pardo , Frío , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Tejido Adiposo Pardo/metabolismo , Animales , Ratones , Masculino , Humanos , Termogénesis/genética , Metabolismo Energético , AMP Cíclico/metabolismo , Ratones Noqueados
2.
Nat Commun ; 11(1): 644, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005828

RESUMEN

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Hígado/metabolismo , Factor de Transcripción MafG/genética , Obesidad/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Anciano , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Factor de Transcripción MafG/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Methods Mol Biol ; 1794: 335-352, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29855970

RESUMEN

Chromatin immunoprecipitation (ChIP) is a powerful technique allowing for investigation of protein-DNA interactions in living cells. Here, we provide a detailed step-by-step protocol for ChIP and highlight important considerations, challenges and pitfalls often encountered in the ChIP procedure. Furthermore, we present data of key quality control (QC) steps and exemplify material performance validation on transcription factor ChIP to provide a QC guide for setting up ChIP. Finally, we provide guidelines for scaling of the ChIP procedure to ChIP sequencing (ChIP-seq) and discuss important considerations associated with this.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Cromatina/genética , ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Células Madre Mesenquimatosas/citología , Proteínas/genética , Factores de Transcripción/genética
4.
Cell Rep ; 16(9): 2359-72, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27545881

RESUMEN

Glucose is an important inducer of insulin secretion, but it also stimulates long-term adaptive changes in gene expression that can either promote or antagonize the proliferative potential and function of ß cells. Here, we have generated time-resolved profiles of enhancer and transcriptional activity in response to glucose in the INS-1E pancreatic ß cell line. Our data outline a biphasic response with a first transcriptional wave during which metabolic genes are activated, and a second wave where cell-cycle genes are activated and ß cell identity genes are repressed. The glucose-sensing transcription factor ChREBP directly activates first wave enhancers, whereas repression and activation of second wave enhancers are indirect. By integrating motif enrichment within late-regulated enhancers with expression profiles of the associated transcription factors, we have identified multiple putative regulators of the second wave. These include RORγ, the activity of which is important for glucose-induced proliferation of both INS-1E and primary rat ß cells.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular/genética , Relación Dosis-Respuesta a Droga , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Glucosa/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Regiones Promotoras Genéticas , Ratas , Transcripción Genética
5.
Bioessays ; 38(7): 618-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273739

RESUMEN

Cofactor squelching is the term used to describe competition between transcription factors (TFs) for a limited amount of cofactors in a cell with the functional consequence that TFs in a given cell interfere with the activity of each other. Since cofactor squelching was proposed based primarily on reporter assays some 30 years ago, it has remained controversial, and the idea that it could be a physiologically relevant mechanism for transcriptional repression has not received much support. However, recent genome-wide studies have demonstrated that signal-dependent TFs are very often absent from the enhancers that are acutely repressed by those signals, which is consistent with an indirect mechanism of repression such as squelching. Here we review these recent studies in the light of the classical studies of cofactor squelching, and we discuss how TF cooperativity in so-called hotspots and super-enhancers may sensitize these to cofactor squelching.


Asunto(s)
ADN/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Eucariontes/genética , Eucariontes/metabolismo , Humanos , Unión Proteica
6.
Nutr Metab (Lond) ; 13: 4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26788115

RESUMEN

BACKGROUND: Previous studies suggest that intake of specific bioactive compounds may have beneficial clinical effects on adipose tissue partly due to their anti-inflammatory and insulin-sensitizing properties. With the overall aim to contribute to better understanding of the mechanisms of selected bioactive nutrients on fat metabolism, we investigated their role on human white adipocyte function. METHODS: The influence of the omega-3-fatty acid docosahexaenoic acid (DHA), the anthocyanin (AC) cyanidin-3-glucoside and its metabolite protocatechuic acid, and the beta-glucan metabolite propionic acid (PI) on adipokine secretion, fatty acid metabolism (lipolysis/lipogenesis) and adipocyte differentiation (lipid accumulation) was studied in human fat cells differentiated in vitro. To investigate possible synergistic, additive or antagonistic effects, DHA was also combined with AC or PI. RESULTS: Each compound, alone or together with DHA, suppressed basal adipocyte lipolysis compared to control treated cells. DHA alone attenuated the secretion of pro-inflammatory adipokines such as chemerin, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1/CCL2), whereas AC suppressed only the latter two. Treatment with PI decreased IL-6, tumour necrosis factor alpha (TNFα) and adiponectin secretion. A combination of DHA and AC decreased TNFα secretion and increased insulin-stimulated lipogenesis. No effect was found on adipocyte differentiation. At the selected concentrations, none of the compounds was found to be cytotoxic. CONCLUSION: The studied bioactive food compounds or their metabolites have beneficial effects in human primary fat cells measured as decreased basal lipolytic activity and secretion of inflammatory markers. A minor effect was also observed on insulin-stimulated glucose uptake albeit only with the combination of DHA and AC. Taken together, our results may link the reported health benefits of the selected bioactives on metabolic disorders such as insulin resistance, hypertension and dyslipidemia to effects on white adipocytes.

7.
Genome Res ; 25(9): 1281-94, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26113076

RESUMEN

The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular , Reprogramación Celular/genética , Humanos , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Unión Proteica , Transporte de Proteínas , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
8.
Nucleic Acids Res ; 43(6): e40, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25564527

RESUMEN

RNA-seq is a sensitive and accurate technique to compare steady-state levels of RNA between different cellular states. However, as it does not provide an account of transcriptional activity per se, other technologies are needed to more precisely determine acute transcriptional responses. Here, we have developed an easy, sensitive and accurate novel computational method, IRNA-SEQ: , for genome-wide assessment of transcriptional activity based on analysis of intron coverage from total RNA-seq data. Comparison of the results derived from iRNA-seq analyses with parallel results derived using current methods for genome-wide determination of transcriptional activity, i.e. global run-on (GRO)-seq and RNA polymerase II (RNAPII) ChIP-seq, demonstrate that iRNA-seq provides similar results in terms of number of regulated genes and their fold change. However, unlike the current methods that are all very labor-intensive and demanding in terms of sample material and technologies, iRNA-seq is cheap and easy and requires very little sample material. In conclusion, iRNA-seq offers an attractive novel alternative to current methods for determination of changes in transcriptional activity at a genome-wide level.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Línea Celular , Inmunoprecipitación de Cromatina/métodos , Inmunoprecipitación de Cromatina/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Regulación de la Expresión Génica , Genoma Humano , Humanos , Intrones , Análisis de Secuencia de ARN/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...