Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Mitochondrion ; 77: 101890, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718898

RESUMEN

High-resolution respirometry (HRR) can assess peripheral blood mononuclear cell (PBMC) bioenergetics, but no standardized medium for PBMC preparation and HRR analysis exist. Here, we study the effect of four different media (MiR05, PBS, RPMI, Plasmax) on the count, size, and HRR (Oxygraph-O2k) of intact PBMCs. Remarkably, the cell count was 21 % higher when PBMCs were resuspended in MiR05 than in PBS or Plasmax, causing O2 flux underestimation during HRR due to inherent adjustments. Moreover, smaller cell size and cell aggregation was observed in MiR05. Based on our findings, we propose that Plasmax, PBS or RPMI is more suitable than MiR05 for HRR of intact PBMCs. We provide oxygen solubility factors for Plasmax and PBS and encourage further optimization of a standardized HRR protocol for intact PBMCs.

2.
Scand J Med Sci Sports ; 34(4): e14612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545946

RESUMEN

INTRODUCTION: Liver fat (LF) and visceral adipose tissue (VAT) content decreases with training, however, this has mainly been investigated in sedentary obese or healthy participants. The aim of this study was to investigate the effects of repeated prolonged exercise on LF and VAT content in well-trained older men and to compare baseline LF and VAT content to recreationally active older men. METHOD: A group of five well-trained older men were tested before and after cycling a total distance of 2558 km in 16 consecutive days. VAT content and body composition was measured using DXA before a bicycle ergometer test was performed to determine maximal fat oxidation (MFO), maximal oxygen consumption ( VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ ), and the relative intensity at which MFO occurred (Fatmax). LF content was measured on a separate day using MRI. For comparison of baseline values, a control group of eight healthy age- and BMI-matched recreationally active men were recruited. RESULTS: The well-trained older men had lower VAT (p = 0.02), and a tendency toward lower LF content (p = 0.06) compared with the control group. The intervention resulted in decreased LF content (p = 0.02), but VAT, fat mass, and lean mass remained unchanged. VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ , MFO, and Fatmax were not affected by the intervention. CONCLUSION: The study found that repeated prolonged exercise reduced LF content, but VAT and VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ remained unchanged. Aerobic capacity was aligned with lower LF and VAT in older active men.


Asunto(s)
Ejercicio Físico , Grasa Intraabdominal , Masculino , Humanos , Anciano , Obesidad/metabolismo , Hígado/diagnóstico por imagen , Prueba de Esfuerzo , Tejido Adiposo/metabolismo , Consumo de Oxígeno
3.
BMC Gastroenterol ; 24(1): 59, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308212

RESUMEN

BACKGROUND: Hepatocellular senescence may be a causal factor in the development and progression of non-alcoholic steatohepatitis (NASH). The most effective currently available treatment for NASH is lifestyle intervention, including dietary modification. This study aimed to evaluate the effects of dietary intervention on hallmarks of NASH and molecular signatures of hepatocellular senescence in the Gubra-Amylin NASH (GAN) diet-induced obese (DIO) and biopsy-confirmed mouse model of NASH. METHODS: GAN DIO-NASH mice with liver biopsy-confirmed NASH and fibrosis received dietary intervention by switching to chow feeding (chow reversal) for 8, 16 or 24 weeks. Untreated GAN DIO-NASH mice and chow-fed C57BL/6J mice served as controls. Pre-to-post liver biopsy histology was performed for within-subject evaluation of NAFLD Activity Score and fibrosis stage. Terminal endpoints included blood/liver biochemistry, quantitative liver histology, mitochondrial respiration and RNA sequencing. RESULTS: Chow-reversal promoted substantial benefits on metabolic outcomes and liver histology, as demonstrated by robust weight loss, complete resolution of hepatomegaly, hypercholesterolemia, elevated transaminase levels and hepatic steatosis in addition to attenuation of inflammatory markers. Notably, all DIO-NASH mice demonstrated ≥ 2 point significant improvement in NAFLD Activity Score following dietary intervention. While not improving fibrosis stage, chow-reversal reduced quantitative fibrosis markers (PSR, collagen 1a1, α-SMA), concurrent with improved liver mitochondrial respiration, complete reversal of p21 overexpression, lowered γ-H2AX levels and widespread suppression of gene expression markers of hepatocellular senescence. CONCLUSIONS: Dietary intervention (chow reversal) substantially improves metabolic, biochemical and histological hallmarks of NASH and fibrosis in GAN DIO-NASH mice. These benefits were reflected by progressive clearance of senescent hepatocellular cells, making the model suitable for profiling potential senotherapeutics in preclinical drug discovery for NASH.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/patología , Obesidad/metabolismo , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Biopsia
4.
J Clin Endocrinol Metab ; 109(2): e799-e808, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37643899

RESUMEN

BACKGROUND: The aim of this study was to investigate the effect of prolonged endurance exercise on adipose tissue inflammation markers and mitochondrial respiration in younger and older men. METHODS: "Young" (aged 30 years, n = 7) and "old" (aged 65 years, n = 7) trained men were exposed to an exercise intervention of 15 consecutive days biking 7 to 9 hours/day at 63% and 65% of maximal heart rate (young and old, respectively), going from Copenhagen, Denmark to Palermo, Italy. Adipose tissue was sampled from both the gluteal and abdominal depot before and after the intervention. Mitochondrial respiration was measured by high-resolution respirometry, and adipose inflammation was assessed by immunohistochemical staining of paraffin embedded sections. RESULTS: An increased number of CD163+ macrophages was observed in both the gluteal and abdominal depot (P < .01). In addition, an increased mitochondrial respiration was observed in the abdominal adipose tissue from men in the young group with complex I (CIp) stimulated respiration, complex I + II (CI+IIp) stimulated respiration and the capacity of the electron transport system (ETS) (P < .05), and in the older group an increase in CIp and CI+IIp stimulated respiration (P < .05) was found. CONCLUSION: Overall, we found a positive effect of prolonged endurance exercise on adipose tissue inflammation markers and mitochondrial respiration in both young and old trained men, and no sign of attenuated function in adipose tissue with age.


Asunto(s)
Tejido Adiposo , Respiración , Masculino , Humanos , Anciano , Terapia por Ejercicio , Macrófagos , Inflamación
5.
Appl Physiol Nutr Metab ; 49(2): 265-272, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913525

RESUMEN

Insulin deficiency in type 1 diabetes (T1D) leads to an impairment of glucose metabolism and mitochondrial function. Actovegin is a hemodialysate of calf blood, which has been shown to enhance glucose uptake and cell metabolism in healthy human skeletal muscle. The objectives of this study were to determine the effects of Actovegin on skeletal muscle mitochondrial respiration and functional aerobic capacity in a T1D mouse model. Effects on the expression of mitochondrial proteins, body mass, and food and water consumption were also investigated. Streptozotocin-induced T1D male C57B1/6 mice (aged 3-4 months) were randomized to an Actovegin group and a control group. Every third day, the Actovegin and control groups were injected intraperitoneally with (0.1 mL) Actovegin and (0.1 mL) physiological salt solution, respectively. Oxidative phosphorylation (OXPHOS) capacity of the vastus lateralis muscle was measured by high resolution respirometry in addition to the expression levels of the mitochondrial complexes as well as voltage-dependent anion channel. Functional aerobic capacity was measured using a rodent treadmill protocol. Body mass and food and water consumption were also measured. After 13 days, in comparison to the control group, the Actovegin group demonstrated a significantly higher skeletal muscle mitochondrial respiratory capacity in an ADP-restricted and ADP-stimulated environment. The Actovegin group displayed a significantly lesser decline in functional aerobic capacity and baseline body mass after 13 days. There were no significant differences in food or water consumption between groups. Actovegin could act as an effective agent for facilitating glucose metabolism and improving OXPHOS capacity and functional aerobic capacity in T1D. Further investigation is warranted to establish Actovegin's potential as an alternative therapeutic drug for T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hemo/análogos & derivados , Masculino , Ratones , Humanos , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Respiración , Glucosa/metabolismo , Mitocondrias Musculares/metabolismo , Consumo de Oxígeno/fisiología
6.
J Appl Physiol (1985) ; 136(1): 79-88, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37969081

RESUMEN

It is well known that exercise efficiency declines at intensities above the lactate threshold, yet the underlying mechanisms are poorly understood. Some have suggested it is due to a decline in mitochondrial efficiency, but this is difficult to examine in vivo. Therefore, the aim of the current study was to examine how changes in temperature and pH, mimicking those that occur during exercise, affect mitochondrial efficiency in skeletal muscle mitochondria. This study was performed on quadriceps muscle of 20 wild-type mice. Muscle tissue was dissected and either permeabilized (n = 10) or homogenized for isolation of mitochondria (n = 10), and oxidative phosphorylation capacity and P/O ratio were assessed using high-resolution respirometry. Samples from each muscle were analyzed in both normal physiological conditions (37°C, pH 7.4), decreased pH (6.8), increased temperature (40°C), and a combination of both. The combination of increased temperature and decreased pH resulted in a significantly lower P/O ratio, mirrored by an increase in leak respiration and a decrease in respiratory control ratio (RCR), in isolated mitochondria. In permeabilized fibers, RCR and leak were relatively unaffected, though a main effect of temperature was observed. Oxidative phosphorylation capacity was unaffected by changes in pH and temperature in both isolated mitochondria and permeabilized fibers. These results indicate that exercise-like changes in temperature and pH lead to impaired mitochondrial efficiency. These findings offer some degree of support to the concept of decreased mitochondrial efficiency during exercise, and may have implications for the assessment of mitochondrial function related to exercise.NEW & NOTEWORTHY To the best of our knowledge, this is the first study to examine the effects of combined changes in temperature and pH, mimicking intramuscular alterations during exercise. Our findings suggest that mitochondrial efficiency is impaired during exercise of moderate to high intensity, which could be a possible mechanism contributing to the decline in exercise efficiency at intensities above the lactate threshold.


Asunto(s)
Mitocondrias Musculares , Mitocondrias , Ratones , Animales , Temperatura , Mitocondrias Musculares/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Concentración de Iones de Hidrógeno , Lactatos/metabolismo , Consumo de Oxígeno/fisiología
7.
Free Radic Biol Med ; 209(Pt 2): 282-291, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37858747

RESUMEN

Ageing, a sedentary lifestyle, and obesity are associated with increased oxidative stress, while regular exercise is associated with an increased antioxidant capacity in trained skeletal muscles. Whether a higher aerobic fitness is associated with increased expression of antioxidant enzymes and their regulatory factors in skeletal muscle remains unknown. Although oestrogens could promote a higher antioxidant capacity in females, it remains unknown whether a sex dimorphism exists in humans regarding the antioxidant capacity of skeletal muscle. Thus, the aim was to determine the protein expression levels of the antioxidant enzymes SOD1, SOD2, catalase and glutathione reductase (GR) and their regulatory factors Nrf2 and Keap1 in 189 volunteers (120 males and 69 females) to establish whether sex differences exist and how age, VO2max and adiposity influence these. For this purpose, vastus lateralis muscle biopsies were obtained in all participants under resting and unstressed conditions. No significant sex differences in Nrf2, Keap1, SOD1, SOD2, catalase and GR protein expression levels were observed after accounting for VO2max, age and adiposity differences. Multiple regression analysis indicates that the VO2max in mL.kg LLM-1.min-1can be predicted from the levels of SOD2, Total Nrf2 and Keap1 (R = 0.58, P < 0.001), with SOD2 being the main predictor explaining 28 % of variance in VO2max, while Nrf2 and Keap1 explained each around 3 % of the variance. SOD1 protein expression increased with ageing in the whole group after accounting for differences in VO2max and body fat percentage. Overweight and obesity were associated with increased pSer40-Nrf2, pSer40-Nrf2/Total Nrf2 ratio and SOD1 protein expression levels after accounting for differences in age and VO2max. Overall, at the population level, higher aerobic fitness is associated with increased basal expression of muscle antioxidant enzymes, which may explain some of the benefits of regular exercise.


Asunto(s)
Adiposidad , Antioxidantes , Humanos , Femenino , Masculino , Catalasa/genética , Factor 2 Relacionado con NF-E2/genética , Superóxido Dismutasa-1 , Proteína 1 Asociada A ECH Tipo Kelch/genética , Obesidad/genética , Músculo Esquelético , Glutatión Reductasa
8.
Endocrinology ; 164(10)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37610219

RESUMEN

Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, ß-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.


Asunto(s)
Metabolismo de los Lípidos , Receptores de Glucocorticoides , Masculino , Animales , Ratones , Metabolismo de los Lípidos/genética , Receptores de Glucocorticoides/genética , Hepatocitos , Hígado , Adipogénesis
9.
Cancer Med ; 12(16): 16985-16996, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37439084

RESUMEN

BACKGROUND: Adjuvant chemo- and radiotherapy cause cellular damage to tumorous and healthy dividing cells. Chemotherapy has been shown to cause mitochondrial respiratory dysfunction in non-tumorous tissues, but the effects on human peripheral blood mononuclear cells (PBMCs) remain unknown. AIM: We aimed to investigate mitochondrial respiration of PBMCs before and after adjuvant chemo- and radiotherapy in postmenopausal patients with early breast cancer (EBC) and relate these to metabolic parameters of the patients. METHODS: Twenty-three postmenopausal women diagnosed with EBC were examined before and shortly after chemotherapy with (n = 18) or without (n = 5) radiotherapy. Respiration (O2 flux per million PBMCs) was assessed by high-resolution respirometry of intact and permeabilized PBMCs. Clinical metabolic characteristics and mitochondrial DNA (mtDNA) content of PBMCs (mtDN relative to nuclear DNA) were furthermore assessed. RESULTS: Respiration of intact and permeabilized PBMCs from EBC patients significantly increased with adjuvant chemo- and radiotherapy (p = 6 × 10-5 and p = 1 × 10-7 , respectively). The oxygen flux attributed to specific mitochondrial complexes and respiratory states increased by 17-43% compared to before therapy initiation. Similarly, PBMC mtDNA content increased by 40% (p = 0.002). Leukocytes (p = 0.0001), hemoglobin (p = 0.0003), and HDL cholesterol (p = 0.003) concentrations decreased whereas triglyceride (p = 0.01) and LDL (p = 0.02) concentrations increased after treatment suggesting a worsened metabolic state. None of the metabolic parameters or the mtDNA content of PBMCs correlated significantly with PBMC respiration. CONCLUSION: This study shows that mitochondrial respiration and mtDNA content in circulating PBMCs increase after adjuvant chemo- and radiotherapy in postmenopausal patients with EBC. Besides the increased mtDNA content, a shift in PBMC subpopulation proportions towards cells relying on oxidative phosphorylation, who may be less sensitive to chemotherapy, might influence the increased mitochondrial respiration observed iafter chemotherapy.


Asunto(s)
Neoplasias de la Mama , Leucocitos Mononucleares , Humanos , Femenino , Leucocitos Mononucleares/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Respiración
10.
J Clin Endocrinol Metab ; 108(10): e916-e922, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37161534

RESUMEN

BACKGROUND: Statin therapy has shown pleiotropic effects affecting both mitochondrial function and inflammatory status. However, few studies have investigated the concurrent effects of statin exposure on mitochondrial function and inflammatory status in human subcutaneous white adipose tissue. OBJECTIVES: In a cross-sectional study, we investigated the effects of simvastatin on mitochondrial function and inflammatory status in subcutaneous white adipose tissue of 55 human participants: 38 patients (19 females/19 males) in primary prevention with simvastatin (> 40 mg/d, > 3 mo) and 17 controls (9 females/8 males) with elevated plasma cholesterol. The 2 groups were matched on age, body mass index, and maximal oxygen consumption. METHODS: Anthropometrics and fasting biochemical characteristics were measured. Mitochondrial respiratory capacity was assessed in white adipose tissue by high-resolution respirometry. Subcutaneous white adipose tissue expression of the inflammatory markers IL-6, chemokine (C-C motif) ligand 2 (CCL2), CCL-5, tumor necrosis factor-α, IL-10, and IL-4 was analyzed by quantitative PCR. RESULTS: Simvastatin-treated patients showed lower plasma cholesterol (P < .0001), low-density lipoprotein (P < .0001), and triglyceride levels (P = .0116) than controls. Simvastatin-treated patients had a lower oxidative phosphorylation capacity of mitochondrial complex II (P = .0001 when normalized to wet weight, P < .0001 when normalized to citrate synthase activity [intrinsic]), and a lower intrinsic mitochondrial electron transport system capacity (P = .0004). Simvastatin-treated patients showed higher IL-6 expression than controls (P = .0202). CONCLUSION: Simvastatin treatment was linked to mitochondrial respiratory capacity in human subcutaneous white adipose tissue, but no clear link was found between statin exposure, respiratory changes, and inflammatory status of adipose tissue.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Simvastatina , Masculino , Femenino , Humanos , Simvastatina/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Interleucina-6/metabolismo , Estudios Transversales , Mitocondrias/metabolismo , Tejido Adiposo Blanco/metabolismo , Colesterol/metabolismo , Tejido Adiposo/metabolismo
11.
J Cachexia Sarcopenia Muscle ; 14(4): 1631-1647, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37194385

RESUMEN

BACKGROUND: Metabolic dysfunction and cachexia are associated with poor cancer prognosis. With no pharmacological treatments, it is crucial to define the molecular mechanisms causing cancer-induced metabolic dysfunction and cachexia. Adenosine monophosphate-activated protein kinase (AMPK) connects metabolic and muscle mass regulation. As AMPK could be a potential treatment target, it is important to determine the function for AMPK in cancer-associated metabolic dysfunction and cachexia. We therefore established AMPK's roles in cancer-associated metabolic dysfunction, insulin resistance and cachexia. METHODS: In vastus lateralis muscle biopsies from n = 26 patients with non-small cell lung cancer (NSCLC), AMPK signalling and protein content were examined by immunoblotting. To determine the role of muscle AMPK, male mice overexpressing a dominant-negative AMPKα2 (kinase-dead [KiDe]) specifically in striated muscle were inoculated with Lewis lung carcinoma (LLC) cells (wild type [WT]: n = 27, WT + LLC: n = 34, mAMPK-KiDe: n = 23, mAMPK-KiDe + LLC: n = 38). Moreover, male LLC-tumour-bearing mice were treated with (n = 10)/without (n = 9) 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to activate AMPK for 13 days. Littermate mice were used as controls. Metabolic phenotyping of mice was performed via indirect calorimetry, body composition analyses, glucose and insulin tolerance tests, tissue-specific 2-[3H]deoxy-d-glucose (2-DG) uptake and immunoblotting. RESULTS: Patients with NSCLC presented increased muscle protein content of AMPK subunits α1, α2, ß2, γ1 and γ3 ranging from +27% to +79% compared with control subjects. In patients with NSCLC, AMPK subunit protein content correlated with weight loss (α1, α2, ß2 and γ1), fat-free mass (α1, ß2 and γ1) and fat mass (α1 and γ1). Tumour-bearing mAMPK-KiDe mice presented increased fat loss and glucose and insulin intolerance. LLC in mAMPK-KiDe mice displayed lower insulin-stimulated 2-DG uptake in skeletal muscle (quadriceps: -35%, soleus: -49%, extensor digitorum longus: -48%) and the heart (-29%) than that in non-tumour-bearing mice. In skeletal muscle, mAMPK-KiDe abrogated the tumour-induced increase in insulin-stimulated TBC1D4thr642 phosphorylation. The protein content of TBC1D4 (+26%), pyruvate dehydrogenase (PDH; +94%), PDH kinases (+45% to +100%) and glycogen synthase (+48%) was increased in skeletal muscle of tumour-bearing mice in an AMPK-dependent manner. Lastly, chronic AICAR treatment elevated hexokinase II protein content and normalized phosphorylation of p70S6Kthr389 (mTORC1 substrate) and ACCser212 (AMPK substrate) and rescued cancer-induced insulin intolerance. CONCLUSIONS: Protein contents of AMPK subunits were upregulated in skeletal muscle of patients with NSCLC. AMPK activation seemed protectively inferred by AMPK-deficient mice developing metabolic dysfunction in response to cancer, including AMPK-dependent regulation of multiple proteins crucial for glucose metabolism. These observations highlight the potential for targeting AMPK to counter cancer-associated metabolic dysfunction and possibly cachexia.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Masculino , Animales , Adenosina Monofosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Caquexia/etiología , Caquexia/metabolismo , Neoplasias Pulmonares/complicaciones , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo
12.
J Gen Physiol ; 155(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37227464

RESUMEN

It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.


Asunto(s)
Miosinas , Miosinas del Músculo Esquelético , Masculino , Humanos , Miosinas del Músculo Esquelético/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adenosina Trifosfato/metabolismo
13.
Am J Hum Biol ; 35(9): e23907, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37132455

RESUMEN

OBJECTIVES: Traditional jumping-dance rituals performed by Maasai men involve prolonged physical exertion that may contribute significantly to overall physical activity level. We aimed to objectively quantify the metabolic intensity of jumping-dance activity and assess associations with habitual physical activity and cardiorespiratory fitness (CRF). METHODS: Twenty Maasai men (18-37 years) from rural Tanzania volunteered to participate in the study. Habitual physical activity was monitored using combined heart rate (HR) and movement sensing over 3 days, and jumping-dance engagement was self-reported. A 1-h jumping-dance session resembling a traditional ritual was organized, during which participants' vertical acceleration and HR were monitored. An incremental, submaximal 8-min step test was performed to calibrate HR to physical activity energy expenditure (PAEE) and assess CRF. RESULTS: Mean (range) habitual PAEE was 60 (37-116) kJ day-1 kg-1 , and CRF was 43 (32-54) mL O2 min-1 kg-1 . The jumping-dance activity was performed at an absolute HR of 122 (83-169) beats·min-1 , and PAEE of 283 (84-484) J min-1 kg-1 or 42 (18-75)% when expressed relative to CRF. The total PAEE for the session was 17 (range 5-29) kJ kg-1 , ~28% of the daily total. Self-reported engagement in habitual jumping-dance frequency was 3.8 (1-7) sessions/week, with a total duration of 2.1 (0.5-6.0) h/session. CONCLUSIONS: Intensity during traditional jumping-dance activity was moderate, but on average sevenfold higher than habitual physical activity. These rituals are common, and can make a substantial contribution to overall physical activity in Maasai men, and thus be promoted as a culture-specific activity to increase energy expenditure and maintain good health in this population.


Asunto(s)
Capacidad Cardiovascular , Conducta Ceremonial , Humanos , Masculino , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología , Prueba de Esfuerzo , Capacidad Cardiovascular/fisiología , Frecuencia Cardíaca/fisiología
14.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175862

RESUMEN

This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Músculo Esquelético/metabolismo , Ejercicio Físico , Biomarcadores/metabolismo , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo
16.
Front Physiol ; 13: 1061063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531168

RESUMEN

Alternate-day fasting induces oscillations in energy stores. We hypothesized that repeated oscillations increases insulin secretion and sensitivity, and improve metabolic health in patients with obesity with or without type 2 diabetes (T2DM). Twenty-three male patients fasted every other day for 30 h for 6 weeks. Experiments included resting energy expenditure, continuous glucose monitoring, intravenous glucose tolerance test, euglycemic hyperinsulinemic clamp, body composition, hepatic triglyceride content, muscle biopsies which were performed at baseline, during 3 weeks without allowed weight loss, and after additional 3 weeks with weight loss. Bodyweight decreased ∼1% and further ∼3% during weeks one to three and four to six, respectively (p < 0.05). Only minor changes in fat mass occurred in weeks 1-3. With weight loss, visceral fat content decreased by 13 ± 3% and 12 ± 2% from baseline in patients with and without T2DM, respectively (p < 0.05). Hepatic triglyceride content decreased by 17 ± 9% and 36 ± 9% (with diabetes) and 27 ± 8% and 40 ± 8% (without diabetes) from baseline to week 3 and week 6, respectively (all p < 0.05). Muscle lipid and glycogen content oscillated with the intervention. Glucose homeostasis, insulin secretion and sensitivity was impaired in patients with T2DM and did not change without weight loss, but improved (p < 0.05) when alternate day fasting was combined with weight loss. In conclusion, alternate-day fasting is feasible in patients with obesity and T2DM, and decreases visceral fat and liver fat deposits. Energy store oscillations by alternate-day fasting do not improve insulin secretion or sensitivity per se. Clinical Trial registration: (ClinicalTrials.gov), (ID NCT02420054).

17.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36139772

RESUMEN

Myalgia and new-onset of type 2 diabetes have been associated with statin treatment, which both could be linked to reduced coenzyme Q10 (CoQ10) in skeletal muscle and impaired mitochondrial function. Supplementation with CoQ10 focusing on levels of CoQ10 in skeletal muscle and mitochondrial function has not been investigated in patients treated with statins. To investigate whether concomitant administration of CoQ10 with statins increases the muscle CoQ10 levels and improves the mitochondrial function, and if changes in muscle CoQ10 levels correlate with changes in the intensity of myalgia. 37 men and women in simvastatin therapy with and without myalgia were randomized to receive 400 mg CoQ10 daily or matched placebo tablets for eight weeks. Muscle CoQ10 levels, mitochondrial respiratory capacity, mitochondrial content (using citrate synthase activity as a biomarker), and production of reactive oxygen species were measured before and after CoQ10 supplementation, and intensity of myalgia was determined using the 10 cm visual analogue scale. Muscle CoQ10 content and mitochondrial function were unaltered by CoQ10 supplementation. Individual changes in muscle CoQ10 levels were not correlated with changes in intensity of myalgia. CoQ10 supplementation had no effect on muscle CoQ10 levels or mitochondrial function and did not affect symptoms of myalgia.

18.
Nat Commun ; 13(1): 2931, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614135

RESUMEN

Impaired mitochondrial oxidative phosphorylation (OXPHOS) in liver tissue has been hypothesised to contribute to the development of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease (NAFLD). It is unknown whether OXPHOS capacities in human visceral (VAT) and subcutaneous adipose tissue (SAT) associate with NAFLD severity and how hepatic OXPHOS responds to improvement in NAFLD. In biopsies sampled from 62 patients with obesity undergoing bariatric surgery and nine control subjects without obesity we demonstrate that OXPHOS is reduced in VAT and SAT while increased in the liver in patients with obesity when compared with control subjects without obesity, but this was independent of NAFLD severity. In repeat liver biopsy sampling in 21 patients with obesity 12 months after bariatric surgery we found increased hepatic OXPHOS capacity and mitochondrial DNA/nuclear DNA content compared with baseline. In this work we show that obesity has an opposing association with mitochondrial respiration in adipose- and liver tissue with no overall association with NAFLD severity, however, bariatric surgery increases hepatic OXPHOS and mitochondrial biogenesis.


Asunto(s)
Cirugía Bariátrica , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Tejido Adiposo/patología , Humanos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/patología , Obesidad/cirugía , Obesidad Mórbida/complicaciones , Obesidad Mórbida/patología , Obesidad Mórbida/cirugía , Biogénesis de Organelos , Respiración
19.
Acta Physiol (Oxf) ; 235(3): e13816, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35347845

RESUMEN

AIM & METHODS: Extreme endurance exercise provides a valuable research model for understanding the adaptive metabolic response of older and younger individuals to intense physical activity. Here, we compare a wide range of metabolic and physiologic parameters in two cohorts of seven trained men, age 30 ± 5 years or age 65 ± 6 years, before and after the participants travelled ≈3000 km by bicycle over 15 days. RESULTS: Over the 15-day exercise intervention, participants lost 2-3 kg fat mass with no significant change in body weight. V̇O2 max did not change in younger cyclists, but decreased (p = 0.06) in the older cohort. The resting plasma FFA concentration decreased markedly in both groups, and plasma glucose increased in the younger group. In the older cohort, plasma LDL-cholesterol and plasma triglyceride decreased. In skeletal muscle, fat transporters CD36 and FABPm remained unchanged. The glucose handling proteins GLUT4 and SNAP23 increased in both groups. Mitochondrial ROS production decreased in both groups, and ADP sensitivity increased in skeletal muscle in the older but not in the younger cohort. CONCLUSION: In summary, these data suggest that older but not younger individuals experience a negative adaptive response affecting cardiovascular function in response to extreme endurance exercise, while a positive response to the same exercise intervention is observed in peripheral tissues in younger and older men. The results also suggest that the adaptive thresholds differ in younger and old men, and this difference primarily affects central cardiovascular functions in older men after extreme endurance exercise.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Adulto , Anciano , Peso Corporal , Ejercicio Físico/fisiología , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Resistencia Física/fisiología , Descanso/fisiología , Triglicéridos/metabolismo
20.
iScience ; 25(2): 103863, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198907

RESUMEN

In clinical trials, oral supplementation with nicotinamide riboside (NR) fails to increase muscle mitochondrial respiratory capacity and insulin sensitivity but also does not increase muscle NAD+ levels. This study tests the feasibility of chronically elevating skeletal muscle NAD+ in mice and investigates the putative effects on mitochondrial respiratory capacity, insulin sensitivity, and gene expression. Accordingly, to improve bioavailability to skeletal muscle, we developed an experimental model for administering NR repeatedly through a jugular vein catheter. Mice on a Western diet were treated with various combinations of NR, pterostilbene (PT), and voluntary wheel running, but the metabolic effects of NR and PT treatment were modest. We conclude that the chronic elevation of skeletal muscle NAD+ by the intravenous injection of NR is possible but does not affect muscle respiratory capacity or insulin sensitivity in either sedentary or physically active mice. Our data have implications for NAD+ precursor supplementation regimens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA