Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioscience ; 72(6): 508-520, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35677292

RESUMEN

Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.

2.
Science ; 375(6582): 753-760, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175810

RESUMEN

Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth's largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins.

3.
Ecology ; 102(11): e03503, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314030

RESUMEN

Frameworks exclusively considering functional diversity are gaining popularity, as they complement and extend the information provided by taxonomic diversity metrics, particularly in response to disturbance. Taxonomic diversity should be included in functional diversity frameworks to uncover the functional mechanisms causing species loss following disturbance events. We present and test a predictive framework that considers temporal functional and taxonomic diversity responses along disturbance gradients. Our proposed framework allows us to test different multidimensional metrics of taxonomic diversity that can be directly compared to calculated multidimensional functional diversity metrics. It builds on existing functional diversity-disturbance frameworks both by using a gradient approach and by jointly considering taxonomic and functional diversity. We used previously unpublished stream insect community data collected prior to, and for the two years following, an extreme flood event that occurred in 2013. Using 14 northern Colorado mountain streams, we tested our framework and determined that taxonomic diversity metrics calculated using multidimensional methods resulted in concordance between taxonomic and functional diversity responses. By considering functional and taxonomic diversity together and using a gradient approach, we were able to identify some of the mechanisms driving species losses following this extreme disturbance event.


Asunto(s)
Inundaciones , Ríos , Animales , Biodiversidad , Colorado , Insectos
4.
Science ; 365(6458): 1124-1129, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31515386

RESUMEN

Tropical montane rivers (TMR) are born in tropical mountains, descend through montane forests, and feed major rivers, floodplains, and oceans. They are characterized by rapid temperature clines and varied flow disturbance regimes, both of which promote habitat heterogeneity, high biological diversity and endemism, and distinct organisms' life-history adaptations. Production, transport, and processing of sediments, nutrients, and carbon are key ecosystem processes connecting high-elevation streams with lowland floodplains, in turn influencing soil fertility and biotic productivity downstream. TMR provide key ecosystem services to hundreds of millions of people in tropical nations. In light of existing human-induced disturbances, including climate change, TMR can be used as natural model systems to examine the effects of rapid changes in abiotic drivers and their influence on biodiversity and ecosystem function.


Asunto(s)
Altitud , Ecosistema , Ríos , Clima Tropical , Biodiversidad , Humanos
5.
Ecol Lett ; 21(4): 525-535, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29430810

RESUMEN

The ecological and evolutionary consequences of extreme events are poorly understood. Here, we tested predictions about species persistence and population genomic change in aquatic insects in 14 Colorado mountain streams across a hydrological disturbance gradient caused by a one in 500-year rainfall event. Taxa persistence ranged from 39 to 77% across sites and declined with increasing disturbance in relation to species' resistance and resilience traits. For taxa with mobile larvae and terrestrial adult stages present at the time of the flood, average persistence was 84% compared to 25% for immobile taxa that lacked terrestrial adults. For two of six species analysed, genomic diversity (allelic richness) declined after the event. For one species it greatly expanded, suggesting resilience via re-colonisation from upstream populations. Thus, while resistance and resilience traits can explain species persistence to extreme disturbance, population genomic change varies among species, challenging generalisations about evolutionary responses to extreme events at landscape scales.


Asunto(s)
Inundaciones , Genómica , Insectos , Animales , Colorado , Insectos/genética , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA