Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 733: 150442, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053103

RESUMEN

INTRODUCTION: Radioprotectors help to protect the body or at least minimize the negative consequences of radiation exposure. The present study aimed to assess the radioprotective potential of Helianthus tuberosus L. polysaccharide (HTLP) in vitality and micronuclei tests. To assess the cytotoxic effects of HTLP, both vitality and MTT reductase assays were conducted. MATERIALS AND METHODS: RAW 264.7 cells viability was assessed 24 h after adding 200 µg/ml HTLP solution by staining cell cultures with propidium iodide and bis-benzimide to detect the nuclei of dead cells and the total number of cells in culture. To assess cell viability via cellular metabolic activity MTT test was used. In this work outbred 24-30 g 5-months old SHK mice have been used. Irradiation was provided with proton beams with an energy of 660 MeV at a dose rate of 80 Gy with doses 1.5 Gy for micronuclei test and 8.5 Gy for survival test. Whole body X-ray irradiation was conducted using the RUT-15 therapeutic X-ray unit with doses of 1.5 Gy for MN test and 6.5 Gy for survival. The HTLP sterile solution in dose 100 µg/animal was injected into the tail vein 15 min before X-ray or proton irradiation. RESULTS AND CONCLUSION: s: Vitality test showed no significant differences between the control group and cells treated with 200 µl of 200 µg/ml HTLP solution, though a greater variability was noted. In contrast, the MTT assay indicated enhanced cell viability in the HTLP-treated cells. HTLP does not exert any toxic effects in cell culture. Moreover, results of MTT reductase assay shows, that HTLP may enhance the cells' metabolic activity. Animals pre-treated with HTLP displayed a significant reduction in micronuclei formation, showing five times fewer micronuclei in bone marrow cells compared to the non-treated group. This comparison highlights HTLP's potential protective effect against radiation-induced chromosomal damage. HTLP treatment demonstrates a significant reduction in hazard compared to the control, indicating its protective effects against irradiation. Thus, it can be concluded that the use of HTLP increases the likelihood of animal survival under the ionizing effects of X-rays and protons. The survival analysis reveals that the HTLP-treated groups exhibit a higher survival rate compared to both the control and Cysteamine-treated groups, suggesting a significant protective effect of HTLP against irradiation, regardless of the type of irradiation (proton or X-ray) with p < 0.0001.

2.
Viruses ; 16(3)2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543788

RESUMEN

COVID-19 is a highly contagious respiratory disease with a high number of lethal cases in humans, which causes the need to search for new therapeutic agents. Polysaccharides could be one of the prospective types of molecules with a large variety of biological activities, especially antiviral. The aim of this work was to study the specific antiviral activity of the drug "Immeran" on a model of a new coronavirus infection SARS-CoV-2 in hamsters. Based on the second experiment, intraperitoneal treatment with the drug according to a treatment regimen in doses of 500 and 1000 µg/kg (administration after an hour, then once a day every other day, a total of 3 administrations) was effective, reliably suppressing the replication of the virus in the lungs and, at a dose of 1000 µg/kg, prevented weight loss in animals. In all cases, the treatment stimulated the formation of virus-neutralizing antibodies to the SARS-CoV-2 virus, which suggests that the drug possesses adjuvant properties.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Mesocricetus , Estudios Prospectivos , Pulmón , Antivirales/farmacología , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Anticuerpos Neutralizantes
3.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446169

RESUMEN

Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.


Asunto(s)
Hipocampo , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Bicuculina/farmacología , Neuronas , Potenciales de Acción , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
4.
J Neurochem ; 164(5): 583-597, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36415923

RESUMEN

Calcium-permeable AMPA receptors (CP-AMPARs) play a pivotal role in brain functioning in health and disease. They are involved in synaptic plasticity, synaptogenesis, and neuronal circuits development. However, the functions of neurons expressing CP-AMPARs and their role in the modulation of network activity remain elusive since reliable and accurate visualization methods are absent. Here we developed an approach allowing the vital identification of neurons containing CP-AMPARs. The proposed method relies on evaluating Ca2+ influx in neurons during activation of AMPARs in the presence of NMDAR and KAR antagonists, and blockers of voltage-gated Ca2+ channels. Using this method, we studied the properties of CP-AMPARs-containing neurons. We showed that the overwhelming majority of neurons containing CP-AMPARs are GABAergic, and they are distinguished by higher amplitudes of the calcium responses to applications of the agonists. Furthermore, about 30% of CP-AMPARs-containing neurons demonstrate the presence of GluK1-containing KARs. Although CP-AMPARs-containing neurons are characterized by more significant Ca2+ influx during the activation of AMPARs than other neurons, AMPAR-mediated Na+ influx is similar in these two groups. We revealed that neurons containing CP-AMPARs demonstrate weak GABA(A)R-mediated inhibition because of the low percentage of GABAergic synapses on the soma of these cells. However, our data show that weak GABA(A)R-mediated inhibition is inherent to all GABAergic neurons in the culture and cannot be considered a unique feature of CP-AMPARs-containing neurons. We believe that the suggested approach will help to understand the role of CP-AMPARs in the mammalian nervous system in more detail.


Asunto(s)
Calcio , Receptores AMPA , Animales , Receptores AMPA/fisiología , Calcio/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico , Mamíferos/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34638683

RESUMEN

Epileptic discharges manifest in individual neurons as abnormal membrane potential fluctuations called paroxysmal depolarization shift (PDS). PDSs can combine into clusters that are accompanied by synchronous oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigate the contribution of L-type voltage-gated calcium channels (VGCC) to epileptiform activity induced in cultured hippocampal neurons by GABA(A)R antagonist, bicuculline. Using KCl-induced depolarization, we determined the optimal effective doses of the blockers. Dihydropyridines (nifedipine and isradipine) at concentrations ≤ 10 µM demonstrate greater selectivity than the blockers from other groups (phenylalkylamines and benzothiazepines). However, high doses of dihydropyridines evoke an irreversible increase in [Ca2+]i in neurons and astrocytes. In turn, verapamil and diltiazem selectively block L-type VGCC in the range of 1-10 µM, whereas high doses of these drugs block other types of VGCC. We show that L-type VGCC blockade decreases the half-width and amplitude of bicuculline-induced [Ca2+]i oscillations. We also observe a decrease in the number of PDSs in a cluster and cluster duration. However, the pattern of individual PDSs and the frequency of the cluster occurrence change insignificantly. Thus, our results demonstrate that L-type VGCC contributes to maintaining the required [Ca2+]i level during oscillations, which appears to determine the number of PDSs in the cluster.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Diltiazem/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...