Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Intervalo de año de publicación
1.
Anim Genet ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219301

RESUMEN

Climate change is a major concern for the near future and for livestock breeding. Cattle breeding, due to its greenhouse gas emissions, is one of the most implicated industries. Consequently, the main future goals are to breed animals resilient to climate change, with the aim of lowering the livestock impact on the environment and selecting animals that will be able to resist different, unsuitable, and changing climates. The aim of this literature review is to compare the most recent studies on the response and adaptation of beef cattle breeds to extreme environments, in terms of genes and pathways involved. Beef breeding is just starting to implement genomics in its selection plans, and shedding light on the genomic responses to extreme climates could speed up and simplify the adaptation of these breeds to climate change. This review discusses the genes involved in climatic stress responses, including those related to extremely cold climates, in beef and dual-purpose cattle breeds. Genes were associated with productive traits, coat and skin structure and development, thermotolerance, cellular physiology and DNA repair mechanisms, immune system, and fertility traits. The knowledge of genes and pathways involved in climate resilience should be taken into consideration for further selection in beef cattle breeding and could promote the valorization of local breeds adapted to extreme environmental conditions. The use of local or resilient breeds could enhance the environmental and social sustainability, animal welfare, and production, compared with the introduction of cosmopolitan breeds with uncertain adaptation in uncontrolled environmental areas.

2.
Sci Rep ; 14(1): 8529, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609445

RESUMEN

Italy has a long history in beef production, with local breeds such as Marchigiana, Chianina, Romagnola, Maremmana, and Podolica which produce high-quality meat. Selection has improved meat production, precocity, growth ability and muscle development, but the genetic determinism of such traits is mostly unknown. Using 33K SNPs-data from young bulls (N = 4064) belonging to these five Italian breeds, we demonstrated that the Maremmana and Podolica rustic breeds are closely related, while the specialised Marchigiana, Chianina, and Romagnola breeds are more differentiated. A genome-wide association study for growth and muscle development traits (average daily gain during the performance test, weight at 1 year old, muscularity) was conducted in the five Italian breeds. Results indicated a region on chromosome 2, containing the myostatin gene (MSTN), which displayed significant genome-wide associations with muscularity in Marchigiana cattle, a breed in which the muscle hypertrophy phenotype is segregating. Moreover, a significant SNP on chromosome 14 was associated, in the Chianina breed, to muscularity. The identification of diverse genomic regions associated with conformation traits might increase our knowledge about the genomic basis of such traits in Italian beef cattle and, eventually, such information could be used to implement marker-assisted selection of young bulls tested in the performance test.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Bovinos/genética , Animales , Masculino , Humanos , Cromosomas Humanos Par 14 , Italia , Fenotipo
3.
Poult Sci ; 103(6): 103677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593544

RESUMEN

Eggshell and shank color in poultry is an intriguing topic of research due to the roles in selection, breed recognition, and environmental adaptation. This study delves into the genomics foundations of shank and eggshell pigmentation in Italian local chickens through genome-wide association studies analysis to uncover the mechanisms governing these phenotypes. To this purpose, 483 animals from 20 local breeds (n = 466) and 2 commercial lines (n = 17) were considered and evaluated for shank and eggshell color. All animals were genotyped using the Affymetrix Axiom 600 K Chicken Genotyping Array. As regards shank color, the most interesting locus was detected on chromosome Z, close to the TYRP1 gene, known to play a key role in avian pigmentation. Additionally, several novel loci and genes associated with shank pigmentation, skin pigmentation, UV protection, and melanocyte regulation were identified (e.g., MTAP, CDKN2A, CDKN2B). In eggshell, fewer significant loci were identified, including SLC7A11 and MITF on chromosomes 4 and 12, respectively, associated with melanocyte processes and pigment synthesis. This comprehensive study shed light on the genetic architecture underlying shank and eggshell color in Italian native chicken breeds, contributing to a better understanding of this phenomenon which plays a role in breed identification and conservation, and has ecological and economic implications.


Asunto(s)
Pollos , Cáscara de Huevo , Pigmentación , Animales , Pollos/genética , Pollos/fisiología , Italia , Pigmentación/genética , Cáscara de Huevo/fisiología , Color , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo
4.
Genet Sel Evol ; 55(1): 24, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013467

RESUMEN

BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.


Asunto(s)
Variación Genética , Oveja Doméstica , Ovinos/genética , Animales , Oveja Doméstica/genética , Filogenia , Australia , Genotipo , Polimorfismo de Nucleótido Simple
5.
Poult Sci ; 102(7): 102692, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120867

RESUMEN

Italy counts a large number of local chicken populations, some without a recognized genetic structure, such as Val Platani (VPL) and Cornuta (COS), which represent noteworthy local genetic resources. In this study, the genotype data of 34 COS and 42 VPL, obtained with the Affymetrix Axiom600KChicken Genotyping Array, were used with the aim to investigate the genetic diversity, the runs of homozygosity (ROH) pattern, as well as the population structure and relationship within the framework of other local Italian and commercial chickens. The genetic diversity indices, estimated using different approaches, displayed moderate levels of genetic diversity in both populations. The identified ROH hotspots harbored genes related to immune response and adaptation to local hot temperatures. The results on genetic relationship and population structure reported a clear clustering of the populations according to their geographic origin. The COS formed a nonoverlapping genomic cluster and clearly separated from the other populations, but showed evident proximity to the Siciliana breed (SIC). The VPL highlighted intermediate relationships between the COS-SIC group and the rest of the sample, but closer to the other Italian local chickens. Moreover, VPL showed a complex genomic structure, highlighting the presence of 2 subpopulations that match with the different source of the samples. The results obtained from the survey on genetic differentiation underline the hypothesis that Cornuta is a population with a defined genetic structure. The substructure that characterizes the Val Platani chicken is probably the consequence of the combined effects of genetic drift, small population size, reproductive isolation, and inbreeding. These findings contribute to the understanding of genetic diversity and population structure, and represent a starting point for designing programs to monitor and safeguard these local genetic resources, in order to define a possible official recognition program as breeds.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Genotipo , Endogamia , Genoma , Variación Genética
6.
Genes (Basel) ; 14(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36980905

RESUMEN

The identification of the dwarf phenotype in chicken is based on body weight, height, and shank length, leaving the differentiation between dwarf and small breeds ambiguous. The aims of the present study were to characterize the sequence variations associated with the dwarf phenotype in three Italian chicken breeds and to investigate the genes associated with their phenotype. Five hundred and forty-one chickens from 23 local breeds (from 20 to 24 animals per breed) were sampled. All animals were genotyped with the 600 K chicken SNP array. Three breeds were described as "dwarf", namely, Mericanel della Brianza (MERI), Mugellese (MUG), and Pepoi (PPP). We compared MERI, MUG, and PPP with the four heaviest breeds in the dataset by performing genome-wide association studies. Results showed significant SNPs associated with dwarfism in the MERI and MUG breeds, which shared a candidate genomic region on chromosome 1. Due to this similarity, MERI and MUG were analyzed together as a meta-population, observing significant SNPs in the LEMD3 and HMGA2 genes, which were previously reported as being responsible for dwarfism in different species. In conclusion, MERI and MUG breeds seem to share a genetic basis of dwarfism, which differentiates them from the small PPP breed.


Asunto(s)
Pollos , Enanismo , Animales , Pollos/genética , Estudio de Asociación del Genoma Completo , Genómica , Italia , Enanismo/genética , Enanismo/veterinaria
7.
Genet Sel Evol ; 55(1): 20, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959552

RESUMEN

BACKGROUND: Availability of single nucleotide polymorphism (SNP) genotyping arrays and progress in statistical analyses have allowed the identification of genomic regions and genes under selection in chicken. In this study, SNP data from the 600 K Affymetrix chicken array were used to detect signatures of selection in 23 local Italian chicken populations. The populations were categorized into four groups for comparative analysis based on live weight (heavy vs light) and geographical area (Northern vs Southern Italy). Putative signatures of selection were investigated by combining three extended haplotype homozygosity (EHH) statistical approaches to quantify excess of haplotype homozygosity within (iHS) and between (Rsb and XP-EHH) groups. Presence of runs of homozygosity (ROH) islands was also analysed for each group. RESULTS: After editing, 541 animals and 313,508 SNPs were available for statistical analyses. In total, 15 candidate genomic regions that are potentially under selection were detected among the four groups: eight within a group by iHS and seven by combining the results of Rsb and XP-EHH, which revealed divergent selection between the groups. The largest overlap between genomic regions identified to be under selection by the three approaches was on chicken chromosome 8. Twenty-one genomic regions were identified with the ROH approach but none of these overlapped with regions identified with the three EHH-derived statistics. Some of the identified regions under selection contained candidate genes with biological functions related to environmental stress, immune responses, and disease resistance, which indicate local adaptation of these chicken populations. CONCLUSIONS: Compared to commercial lines, local populations are predominantly reared as backyard chickens, and thus, may have developed stronger resistance to environmental challenges. Our results indicate that selection can play an important role in shaping signatures of selection in local chicken populations and can be a starting point to identify gene mutations that could have a useful role with respect to climate change.


Asunto(s)
Adaptación Fisiológica , Pollos , Genes , Genoma , Selección Genética , Pollos/clasificación , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/inmunología , Animales , Genoma/genética , Adaptación Fisiológica/genética , Haplotipos , Homocigoto , Polimorfismo de Nucleótido Simple , Italia , Predisposición Genética a la Enfermedad , Estrés Fisiológico/genética , Genética de Población , Genómica
8.
Anim Genet ; 54(3): 338-354, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36752047

RESUMEN

Increases in chicken production are mainly due to specialised breeds. However, local breeds are of increasing importance, known for ability to adapt to the environment and unique products. Conventional poultry products contain lower levels of n-3 fatty acids (FAs) compared to those obtained from local breeds, therefore the aim of this study was to evaluate the modulation of expression of genes involved in long-chain polyunsaturated FA (PUFA) biosynthesis pathways according to genetic background, diet conditions, and sex. Animals from two local breeds and a commercial line were fed different diets: control and experimental diet (10% linseed supplementation). For each breed and diet group, both sexes were reared. The RNA was extracted from 36 liver samples and sequenced by RNAseq method. Bioinformatic analysis was carried out to find differentially expressed genes from comparisons between experimental groups. Results showed low impact of diet on differentially expressed genes related to FA biosynthesis, but linseed diet increased percentage of n-3 FAs of liver. Sex and genetic background determined the differential expression of genes related to long-chain PUFA biosynthesis. Specifically, females of local breeds shared 23 up-regulated genes when compared to their respective commercial line groups. Some of the shared genes had a role in de novo triglyceride biosynthesis (MTTPL and GPAM), and in de novo FA biosynthesis (ACACA and SCD) was detected. In conclusion, local breeds are able to better adapt to a diet rich in PUFA, by triggering certain transcriptomic shifts in the liver that allow birds to process the high PUFA content provided by diet.


Asunto(s)
Pollos , Ácidos Grasos Omega-3 , Animales , Dieta/veterinaria , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Aceite de Linaza/metabolismo , Hígado/metabolismo , Antecedentes Genéticos
9.
Res Vet Sci ; 155: 103-114, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669378

RESUMEN

The dog was probably the first domesticated animal. Despite extensive archaeological and genetic investigations, the origin and the evolution of the extant dogs are still being debated. Dog breeds that have over time been selected for hunting share common ancestral traits. This study represents the first comprehensive attempt to survey at the genomic and mitochondrial level eight hound-like dogs breeds indigenous to the Mediterranean Basin to determine if they share common ancient origins. Results from the microsatellite analysis indicate that all the dog populations have a low inbreeding value.The Kelb tal-Fenek has a high divergence from the current Egyptian street population, however there is not enough evidence from this study to exclude completely the potential of an ancient common relationship. Overall, the mitochondrial results indicate high frequencies of haplogroups A and B and a low representation of haplogroup C, while only one Egyptian dog could be assigned to haplogroup D. Results reveal identities and shared clades, suggesting the conservation of ancient European mitotypes in the Mediterranean hound-like breeds, especially in the Egyptian population. Although none of the dog populations/breeds participating in this study indicate to be direct descendants of the Egyptian dogs, they still have a very close morphologically resemblance to those iconic Egyptian dogs often depicted in ancient art forms and share some genetic links with the current Egyptian population. Further research is required with other markers such us complete mitogenomes and SNP panels to confirm the complex history of the Mediterranean dogs involved in this study.


Asunto(s)
ADN Mitocondrial , Variación Genética , Animales , Perros , Haplotipos , ADN Mitocondrial/genética , Filogeografía , Endogamia , Filogenia
10.
Animals (Basel) ; 12(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35203227

RESUMEN

The myostatin gene also called Growth Differentiation Factor 8 gene (GDF8) is one of the most investigated loci that can be responsible for several quantitative and qualitative carcass and meat traits in double-muscled beef cattle. The objective of the study was to bring to light the effect of the myostatin polymorphism on slaughtering performance and meat quality in Marchigiana beef cattle. The experiment was carried out on 78 bulls reared according to the "cow-calf" extensive managing system. At the end of the fattening period, in vivo and carcass data were recorded. From each carcass, a steak of Longissimus thoracis was taken and used to determine the meat's analytical composition and colorimetric properties. Finally, from each steak a sample of Longissimus thoracis was collected, then used for DNA extraction and genotyping at the myostatin locus. The heterozygous bulls showed slight superiority in the carcass data (e.g., hot carcass weight: 426.09 kg-heterozygotes vs. 405.32 kg-normal) and meat quality parameters, although not always with statistical significance. Only fat and ashes content were significantly affected by the myostatin genotype (heterozygotes: 2.01%, 1.26%; normal: 3.04%, 1.15%). The greater muscularity of heterozygous animals compared to normal ones could be a starting point to improving productive efficiency in Marchigiana beef cattle.

11.
Sci Rep ; 12(1): 2637, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173269

RESUMEN

The metabolism of polyunsaturated fatty acids (PUFAs) plays an important role in male reproduction. Linoleic and alpha-linolenic acids need to be provided in the diet and they are converted into long chain polyunsaturated fatty acids by steps of elongation and desaturation, exerted by elongases 2 (ELOVL2) and 5 (ELOVL5) and Δ5- (FADS1) and Δ6-desaturase (FADS2). This study aims to assess the gene expression and localization of enzymes involved in the synthesis of n-3 and n-6 long-chain PUFAs in control rabbits and those fed diets containing 10% extruded flaxseed. Enzyme and PUFA localization were assessed in the testes and epididymis by immunofluorescence. Testes showed high gene expression of FADS2, ELOVL2 and ELOVL5 and low expression of FADS1. Intermediate metabolites, enzymes and final products were differently found in Leydig, Sertoli and germinal cells. FADS2 was localized in interstitial cells and elongated spermatids; ELOVL5 in meiotic cells; FADS1 was evident in interstitial tissue, Sertoli cells and elongated spermatids; ELOVL2 in interstitial cells. Epididymal vesicles were positive for FADS1, ELOVL2 and ELOVL5 as well as docosahexaenoic, eicosapentaenoic, and arachidonic acids. This knowledge of fatty acids (FA) metabolism in spermatogenesis and the influence of diet on FA profile could help identify causes of male infertility, suggesting new personalized therapy.


Asunto(s)
delta-5 Desaturasa de Ácido Graso/genética , delta-5 Desaturasa de Ácido Graso/metabolismo , Epidídimo/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Expresión Génica , Testículo/metabolismo , Animales , Dieta , Ácidos Grasos Omega-6/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico/metabolismo , Masculino , Conejos , Espermatogénesis/genética , Ácido alfa-Linolénico/metabolismo
12.
Genet Sel Evol ; 53(1): 92, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895134

RESUMEN

BACKGROUND: Climate and farming systems, several of which are considered as low-input agricultural systems, vary between goat populations from Northern and Southern Italy and have led to different management practices. These processes have impacted genome shaping in terms of inbreeding and regions under selection and resulted in differences between the northern and southern populations. Both inbreeding and signatures of selection can be pinpointed by the analysis of runs of homozygosity (ROH), which provides useful information to assist the management of this species in different rural areas. RESULTS: We analyzed the ROH distribution and inbreeding (FROH) in 902 goats from the Italian Goat Consortium2 dataset. We evaluated the differences in individual ROH number and length between goat breeds from Northern (NRD) and Central-southern (CSD) Italy. Then, we identified the signatures of selection that differentiate these two groups using three methods: ROH, ΔROH, and averaged FST. ROH analyses showed that some Italian goat breeds have a lower inbreeding coefficient, which is attributable to their management and history. ROH are longer in breeds that are undergoing non-optimal management or with small population size. In several small breeds, the ROH length classes are balanced, reflecting more accurate mating planning. The differences in climate and management between the NRD and CSD groups have resulted in different ROH lengths and numbers: the NRD populations bred in isolated valleys present more and shorter ROH segments, while the CSD populations have fewer and longer ROH, which is likely due to the fact that they have undergone more admixture events during the horizontal transhumance practice followed by a more recent standardization. We identified four genes within signatures of selection on chromosome 11 related to fertility in the NRD group, and 23 genes on chromosomes 5 and 6 related to growth in the CSD group. Finally, we identified 17 genes on chromosome 12 related to environmental adaptation and body size with high homozygosity in both groups. CONCLUSIONS: These results show how different management practices have impacted the level of genomic inbreeding in two Italian goat groups and could be useful to assist management in a low-input system while safeguarding the diversity of small populations.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Animales , Genoma , Cabras/genética , Homocigoto , Endogamia
13.
PeerJ ; 9: e12049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692245

RESUMEN

In the last decades, intensive selection programs have led to sustained increases of inbreeding in dairy cattle, a feature that might have adverse consequences on the viability and phenotypic performance of their offspring. This study aimed to determine the evolution of inbreeding of five Italian beef cattle breeds (Marchigiana, Chianina, Romagnola, Maremmana, and Podolica) during a period of almost 20 years (2002-2019). The estimates of Ho, He, Fhat2 , and Fped averaged across years (2002-2019) in the studied breeds fluctuated between 0.340-0.401, 0.348-0.392, -0.121-0.072, and 0.000-0.068, respectively. Moreover, annual rates of increase of the estimated inbreeding coefficients have been very low (Fhat2 = 0.01-0.02%; Fped = 0.003-0.004%). The use of a high number of bulls combined with strategies implemented by the Association of Italian Beef Cattle Breeders ANABIC to minimize inbreeding might explain these results. Despite the fact that diversity and inbreeding have remained quite stable during the last two decades, we have detected a sustained decrease of the population effective size of these five breeds. Such results should be interpreted with caution due to the inherent difficulty of estimating Ne from SNPs data in a reliable manner.

14.
Front Genet ; 12: 715656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594362

RESUMEN

The preservation of genetic variability of autochthonous poultry breeds is crucial in global biodiversity. A recent report revealed small breed size and potential risk of extinction of all native Italian poultry breeds; therefore, a correct assessment of their genetic diversity is necessary for a suitable management of their preservation. In this work, we provided an overview of the contribution to poultry biodiversity of some Italian autochthonous breeds reared in conservation centers devoted to local biodiversity preservation. The level of genetic diversity, molecular kinship, inbreeding, contribution to overall genetic diversity, and rate of extinction of each breed were analyzed with a set of 14 microsatellite loci in 17 autochthonous chicken breeds. To evaluate genetic variability, total number (Na), and effective number (Ne) of alleles, observed (Ho) and expected (He) heterozygosity, and F (Wright's inbreeding coefficient) index were surveyed. The contribution of each analyzed breed to genetic diversity of the whole dataset was assessed using MolKin3.0; global genetic diversity and allelic richness contributions were evaluated. All the investigated loci were polymorphic; 209 alleles were identified (94 of which private alleles). The average number of alleles per locus was 3.62, and the effective number of alleles was 2.27. The Ne resulted lower in all breeds due to the presence of low-frequency alleles that can be easily lost by genetic drift, thus reducing the genetic variability of the breeds, and increasing their risk of extinction. The global molecular kinship was 27%, the average breed molecular kinship was 53%, and the mean inbreeding rate 43%, with a self-coancestry of 78%. Wright's statistical analysis showed a 41% excess of homozygous due to breed genetic differences (34%) and to inbreeding within the breed (9%). Genetic variability analysis showed that 11 breeds were in endangered status. The contribution to Italian poultry genetic diversity, estimated as global genetic diversity, and ranged from 30.2 to 98.5%. In conclusion, the investigated breeds maintain a unique genetic pattern and play an important role in global Italian poultry biodiversity, providing a remarkable contribution to genetic variability.

16.
BMC Biol ; 19(1): 118, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34130700

RESUMEN

BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.


Asunto(s)
Pollos , Domesticación , Animales , Animales Domésticos/genética , Pollos/genética , Genoma , Genómica , Humanos
17.
Genet Sel Evol ; 53(1): 48, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078254

RESUMEN

BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


Asunto(s)
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Selección Artificial , Distribución Animal , Animales , Teorema de Bayes , Evolución Molecular , Frecuencia de los Genes
18.
Sci Rep ; 11(1): 10986, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040003

RESUMEN

Local adaptation of animals to the environment can abruptly become a burden when faced with rapid climatic changes such as those foreseen for the Italian peninsula over the next 70 years. Our study investigates the genetic structure of the Italian goat populations and links it with the environment and how genetics might evolve over the next 50 years. We used one of the largest national datasets including > 1000 goats from 33 populations across the Italian peninsula collected by the Italian Goat Consortium and genotyped with over 50 k markers. Our results showed that Italian goats can be discriminated in three groups reflective of the Italian geography and its geo-political situation preceding the country unification around two centuries ago. We leveraged the remarkable genetic and geographical diversity of the Italian goat populations and performed landscape genomics analysis to disentangle the relationship between genotype and environment, finding 64 SNPs intercepting genomic regions linked to growth, circadian rhythm, fertility, and inflammatory response. Lastly, we calculated the hypothetical future genotypic frequencies of the most relevant SNPs identified through landscape genomics to evaluate their long-term effect on the genetic structure of the Italian goat populations. Our results provide an insight into the past and the future of the Italian local goat populations, helping the institutions in defining new conservation strategy plans that could preserve their diversity and their link to local realities challenged by climate change.


Asunto(s)
Genómica , Cabras , Polimorfismo de Nucleótido Simple , Animales , Genética de Población , Genotipo , Selección Genética
19.
Animals (Basel) ; 11(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525718

RESUMEN

In goats, as in sheep, genotypes of the prion protein gene (PRNP) can influence animals' susceptibility to scrapie. Since the polymorphic codons in sheep are well known, a genetic selection plan has been implemented in Europe, in order to reduce the prevalence of susceptible genotypes to scrapie. In Italy, no breeding plan for scrapie resistance in goats has been adopted, yet. Likewise, according to the most recent modification of Regulation EU 999/2001 (Regulation EU 772/2020) of the European Commission (EU), based on all the available experimental and in field data, K222, D146 and S146 polymorphisms could be used as scrapie resistance alleles in genetic management both in scrapie outbreaks and in disease prevention. In order to collect data on the variability of PRNP, the present study aimed to analyze the sequence of the PRNP gene in eight Italian local goat populations/breeds reared in central and southern Italy (Bianca Monticellana, Capestrina, Facciuta della Valnerina, Fulva del Lazio, Garganica, Grigia Ciociara, Grigia Molisana, and Teramana), some of which were investigated for the first time; moreover, two cosmopolitan breeds (Alpine and Saanen) were included. Blood samples were collected from 219 goats. Genomic DNA was extracted from whole blood. DNA was used as template in PCR amplification of the entire PRNP open reading frame (ORF). Purified amplicons have been sequenced and aligned to Capra hircus PRNP. Particularly, the alleles carrying the resistance-related 222 K polymorphism occurred in all populations with a frequency between 2.5% and 12.5%. An additional resistance allele carrying the S146 variant was observed with a frequency of 3.7% only in the Alpine breed. For three of the estimated alleles, we could not establish if the found double polymorphisms in heterozygosis were in phase, due to technical limitations. In this context, in addition to selective culling in scrapie outbreaks according to the European regulation in force, in the future, selection plans could be adopted to deal with scrapie and to control its diffusion, meanwhile paying attention to preserve a high variability of PRNP.

20.
Animals (Basel) ; 10(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824706

RESUMEN

The genomic variability of local Italian chicken breeds, which were monitored under a conservation plan, was studied using single nucleotide polymorphisms (SNPs) to understand their genetic diversity and population structure. A total of 582 samples from 23 local breeds and four commercial stocks were genotyped using the Affymetrix 600 K Chicken SNP Array. In general, the levels of genetic diversity, investigated through different approaches, were lowest in the local chicken breeds compared to those in the commercial stocks. The level of genomic inbreeding, based on runs of homozygosity (FROH), was markedly different among the breeds and ranged from 0.121 (Valdarnese) to 0.607 (Siciliana). In all breeds, short runs of homozygosity (ROH) (<4 Mb in length) were more frequent than long segments. The patterns of genetic differentiation, model-based clustering, and neighbor networks showed that most breeds formed non-overlapping clusters and were clearly separate populations, which indicated the presence of gene flow, especially among breeds that originated from the same geographical area. Four genomic regions were identified as hotspots of autozygosity (islands) among the breeds, where the candidate genes are involved in morphological traits, such as body weight and feed conversion ratio. We conclude that the investigated breeds have conserved authentic genetic patterns, and these results can improve conservation strategies; moreover, the conservation of local breeds may play an important role in the local economy as a source of high-quality products for consumers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...