RESUMEN
BACKGROUND: Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS: We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS: Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION: Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.
Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Interleucina-15 , Animales , Ratones , Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Humanos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Femenino , Subunidad alfa del Receptor de Interleucina-15 , Receptores Quiméricos de Antígenos/inmunología , Linfoma/terapia , Linfoma/inmunología , Ratones Endogámicos BALB C , Linfocitos T/inmunología , Linfocitos T/trasplanteRESUMEN
A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1ß and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1ß mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Mentol/uso terapéutico , Precursor de Proteína beta-Amiloide/genética , Linfocitos T Reguladores , Ratones Transgénicos , Cognición , InmunidadRESUMEN
BACKGROUND: One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS: EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS: EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS: These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Asunto(s)
Receptores Quiméricos de Antígenos , Teratocarcinoma , Animales , Células Endoteliales , Fibronectinas , Humanos , Ratones , Ratones Endogámicos C57BL , Linfocitos T , Teratocarcinoma/metabolismo , Microambiente Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Alphavirus vectors based on self-amplifying RNA (saRNA) generate high and transient levels of transgene expression and induce innate immune responses, making them an interesting tool for antitumor therapy. These vectors are usually delivered as viral particles, but it is also possible to administer them as RNA. We evaluated this possibility by in vivo electroporation of Semliki Forest virus (SFV) saRNA for local treatment of murine colorectal MC38 subcutaneous tumors. Optimization of saRNA electroporation conditions in tumors was performed using an SFV vector coding for luciferase. Then we evaluated the therapeutic potential of this approach using an SFV saRNA coding for interleukin-12 (SFV-IL-12), a proinflammatory cytokine with potent antitumor effects. Delivery of SFV-IL-12 saRNA by electroporation led to improvement in tumor control and higher survival compared with mice treated with electroporation or with SFV-IL-12 saRNA alone. The antitumor efficacy of SFV-IL-12 saRNA electroporation increased by combination with systemic PD-1 blockade. This therapy, which was also validated in a hepatocellular carcinoma tumor model, suggests that local delivery of saRNA by electroporation could be an attractive strategy for cancer immunotherapy. This approach could have easy translation to the clinical practice, especially for percutaneously accessible tumors.
RESUMEN
Recent advances in immunotherapy have revolutionized the treatment of cancer. The use of adoptive cell therapies (ACT) such as those based on tumor infiltrating lymphocytes (TILs) or genetically modified cells (transgenic TCR lymphocytes or CAR-T cells), has shown impressive results in the treatment of several types of cancers. However, cancer cells can exploit mechanisms to escape from immunosurveillance resulting in many patients not responding to these therapies or respond only transiently. The failure of immunotherapy to achieve long-term tumor control is multifactorial. On the one hand, only a limited percentage of the transferred lymphocytes is capable of circulating through the bloodstream, interacting and crossing the tumor endothelium to infiltrate the tumor. Metabolic competition, excessive glucose consumption, the high level of lactic acid secretion and the extracellular pH acidification, the shortage of essential amino acids, the hypoxic conditions or the accumulation of fatty acids in the tumor microenvironment (TME), greatly hinder the anti-tumor activity of the immune cells in ACT therapy strategies. Therefore, there is a new trend in immunotherapy research that seeks to unravel the fundamental biology that underpins the response to therapy and identifies new approaches to better amplify the efficacy of immunotherapies. In this review we address important aspects that may significantly affect the efficacy of ACT, indicating also the therapeutic alternatives that are currently being implemented to overcome these drawbacks.
Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor , Neoplasias/terapia , Linfocitos TRESUMEN
The high metabolic activity and insufficient perfusion of tumors leads to the acidification of the tumor microenvironment (TME) that may inhibit the antitumor T cell activity. We found that pharmacological inhibition of the acid loader chloride/bicarbonate anion exchanger 2 (Ae2), with 4,4'-diisothiocyanatostilbene-2,2'-disulfonicacid (DIDS) enhancedCD4+ andCD8+ T cell function upon TCR activation in vitro, especially under low pH conditions. In vivo, DIDS administration delayed B16OVA tumor growth in immunocompetent mice as monotherapy or when combined with adoptive T cell transfer of OVA-specificT cells. Notably, genetic Ae2 silencing in OVA-specificT cells improvedCD4+/CD8+ T cell function in vitro as well as their antitumor activity in vivo. Similarly, genetic modification of OVA-specificT cells to overexpress Hvcn1, a selectiveH+ outward current mediator that prevents cell acidification, significantly improved T cell function in vitro, even at low pH conditions. The adoptive transfer of OVA-specificT cells overexpressing Hvcn1 exerted a better antitumor activity in B16OVA tumor-bearingmice. Hvcn1 overexpression also improved the antitumor activity of CAR T cells specific for Glypican 3 (GPC3) in mice bearing PM299L-GPC3tumors. Our results suggest that preventing intracellular acidification by regulating the expression of acidifier ion channels such as Ae2 or alkalinizer channels like Hvcn1 in tumor-specificlymphocytes enhances their antitumor response by making them more resistant to the acidic TME.
Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia Adoptiva , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Inmunoterapia Adoptiva/métodos , RatonesRESUMEN
Adoptive cell transfer therapy using CD8+ T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8+ T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8+ T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8+ T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8+ T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-γ, IFN-α, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8+ T cells with respect to FOXP3-wt CD8+ T cells. Our results suggest that transient expression of FOXP3 by CD8+ T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Factores de Transcripción Forkhead/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos , RatonesRESUMEN
BACKGROUND/AIM: Irreversible electroporation (IRE) showed promising results for small-size tumors and very early cancers. However, further development is needed to evolve this procedure into a more efficient ablation technique for long-term control of tumor growth. In this work, we show that it is possible to increase the antitumor efficiency of IRE by simmultaneously injecting c-di-GMP, a STING agonist, intratumorally. MATERIALS AND METHODS: Intratumoral administration of c-di-GMP simultaneously to IRE was evaluated in murine models of melanona (B16.OVA) and hepatocellular carcinoma (PM299L). RESULTS: The combined therapy increased the number of tumor-infiltrating IFN-γ/TNF-α-producing CD4 and CD8 T cells and delayed tumor growth, as compared to the effect observed in groups treated with c-di-GMP or IRE alone. CONCLUSION: These results can lead to the development of a new therapeutic strategy for the treatment of cancer patients refractory to other therapies.
Asunto(s)
Técnicas de Ablación/métodos , Carcinoma Hepatocelular/terapia , GMP Cíclico/análogos & derivados , Electroporación/métodos , Neoplasias Hepáticas/terapia , Proteínas de la Membrana/agonistas , Animales , Línea Celular , Terapia Combinada/métodos , GMP Cíclico/administración & dosificación , Femenino , Neoplasias Hepáticas Experimentales/terapia , Ratones Endogámicos C57BLRESUMEN
Therapies based on immune checkpoint inhibitors (ICPI) have yielded promising albeit limited results in patients with hepatocellular carcinoma (HCC). Vaccines have been proposed as combination partners to enhance response rates to ICPI. Thus, we analyzed the combined effect of a vaccine based on the TLR4 ligand cold-inducible RNA binding protein (CIRP) plus ICPI. Mice were immunized with vaccines containing ovalbumin linked to CIRP (OVA-CIRP), with or without ICPI, and antigen-specific responses and therapeutic efficacy were tested in subcutaneous and orthotopic mouse models of liver cancer. OVA-CIRP elicited polyepitopic T-cell responses, which were further enhanced when combined with ICPI (anti-PD-1 and anti-CTLA-4). Combination of OVA-CIRP with ICPI enhanced ICPI-induced therapeutic responses when tested in subcutaneous and intrahepatic B16-OVA tumors, as well as in the orthotopic PM299L HCC model. This effect was associated with higher OVA-specific T-cell responses in the periphery, although many tumor-infiltrating lymphocytes still displayed an exhausted phenotype. Finally, a new vaccine containing human glypican-3 linked to CIRP (GPC3-CIRP) induced clear responses in humanized HLA-A2.01 transgenic mice, which increased upon combination with ICPI. Therefore, CIRP-based vaccines may generate anti-tumor immunity to enhance ICPI efficacy in HCC, although blockade of additional checkpoint molecules and immunosuppressive targets should be also considered.
RESUMEN
PURPOSE: To evaluate the therapeutic efficacy of irreversible electroporation (IRE) combined with the intratumoral injection of the immunogenic adjuvant poly-ICLC (polyinosinic-polycytidylic acid and poly-L-lysine, a dsRNA analog mimicking viral RNA) inmediately before IRE. MATERIALS AND METHODS: Mice and rabbits bearing hepatocellular carcinoma tumors (Hepa.129 and VX2 tumor models, respectively) were treated with IRE (2 pulses of 2500V), with poly-ICLC, or with IRE + poly-ICLC combination therapy. Tumor growth in mice was monitored using a digital caliper and by computed tomography in rabbits. RESULTS: Intratumoral administration of poly-ICLC immediately before IRE elicited shrinkage of Hepa.129 cell-derived tumors in 70% of mice, compared to 30% and 26% by poly-ICLC or IRE alone, respectively (P = .0004). This combined therapy induced the shrinkage of VX-2-based hepatocellular carcinoma tumors in 40% of rabbits, whereas no response was achieved by either individual treatment (P = .045). The combined therapy activated a systemic antitumor response able to inhibit the growth of other untreated tumors. CONCLUSIONS: IRE treatment, immediately preceded by the intratumoral administration of an immunogenic adjuvant such as poly-ICLC, might enhance the antitumor effect of the IRE procedure. This combination might facilitate the induction of a long-term systemic response to prevent tumor relapses and the appearance of metastases.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Carboximetilcelulosa de Sodio/análogos & derivados , Carcinoma Hepatocelular/terapia , Electroporación/métodos , Neoplasias Hepáticas Experimentales/terapia , Poli I-C/administración & dosificación , Polilisina/análogos & derivados , Animales , Carboximetilcelulosa de Sodio/administración & dosificación , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Inyecciones Intralesiones , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/patología , Ratones Endogámicos C3H , Polilisina/administración & dosificación , Conejos , Carga TumoralRESUMEN
Adoptive immunotherapy with ex vivo-expanded tumor-infiltrating lymphocytes (TILs) has achieved objective clinical responses in a significant number of patients with cancer. The failure of many patients to develop long-term tumor control may be, in part, due to exhaustion of transferred T cells in the presence of a hostile tumor microenvironment. In several tumor types, growth and survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family. We speculated that if transferred T cells could benefit from EGFR ligands produced by the tumor, they might proliferate better and exert their anti-tumor activities more efficiently. We found that CD8+ T cells transduced with a retrovirus to express EGFR responded to EGFR ligands activating the EGFR signaling pathway. These EGFR-expressing effector T cells proliferated better and produced more IFN-γ and TNF-α in the presence of EGFR ligands produced by tumor cells in vitro. EGFR-expressing CD8 T cells from OT-1 mice were more efficient killing B16-OVA cells than control OT-1 CD8 T cells. Importantly, EGFR-expressing OT-1 T cells injected into B16-OVA tumor bearing mice were recruited into the tumor, expressed lower levels of the exhaustion markers PD1, TIGIT, and LAG3, and were more efficient in delaying tumor growth. Our results suggest that genetic modification of CD8+ T cells to express EGFR might be considered in immunotherapeutic strategies based on adoptive transfer of anti-tumor T cells against cancers expressing EGFR ligands.
Asunto(s)
Traslado Adoptivo , Linfocitos T CD8-positivos , Receptores ErbB , Vectores Genéticos , Neoplasias , Retroviridae , Transducción Genética , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/trasplante , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/inmunología , Femenino , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapiaRESUMEN
A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1ß, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-γ. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases.
Asunto(s)
Miedo/psicología , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Memoria/efectos de los fármacos , Monoterpenos/farmacología , Administración por Inhalación , Animales , Cognición , Condicionamiento Psicológico , Monoterpenos Ciclohexánicos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Factores Inmunológicos/administración & dosificación , Inmunomodulación/genética , Leucocitos/efectos de los fármacos , Leucocitos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Monoterpenos/administración & dosificación , Odorantes , Virosis/etiologíaRESUMEN
Although T regulatory cells (Treg) are essential for the prevention of autoimmune diseases, their immunoregulatory function restrains the induction of immune responses against cancer. Thus, development of inhibitors of FOXP3, a key transcription factor for the immunosuppressive activity of Treg, might give new therapeutic opportunities. In a previous work we identified a peptide (named P60) able to enter into the cells, bind to FOXP3, and impair Treg activity in vitro and in vivo. Here we show that P60 binds to the intermediate region of FOXP3 and inhibits its homodimerization as well as its interaction with the transcription factor AML1. Alanine-scanning of P60 revealed the relevance of each position on FOXP3 binding, homodimerization, association with AML1 and inhibition of Treg activity. Introduction of alanine at positions 2, 5 and 11 improved the activity of the original P60, whereas alanine mutations at positions 1, 7, 8, 9, 10 and 12 were detrimental. Multiple mutation experiments allowed us to identify peptides with higher FOXP3 binding affinity and stronger biological activity than the original P60. Head to tail macrocyclization of peptide P60-D2A-S5A improved Treg inhibition and enhanced anti-tumor activity of anti-PD1 antibodies in a model of hepatocellular carcinoma. Introduction of a D-aminoacid at position 2 augmented significantly microsomal stability while maintained FOXP3 binding capacity and Treg inhibition in vitro. In vivo, when combined with the cytotoxic T-cell epitope AH1, it induced protection against CT26 tumor implantation. This study provides important structure-function relationships essential for further drug design to inhibit Treg cells in cancer.