RESUMEN
Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.
Asunto(s)
Virus de la Fiebre Aftosa , Conformación de Ácido Nucleico , ARN Viral , Replicación Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Replicación Viral/genética , ARN Viral/genética , ARN Viral/metabolismo , Animales , Regiones no Traducidas 5' , Fiebre Aftosa/virología , Genoma Viral , Línea Celular , CricetinaeRESUMEN
In the original publication [...].
RESUMEN
Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures. Continued virus passage with sub-neutralising dilutions of these sera resulted in a decrease in time to complete CPE, suggesting that FMDV in these cultures adapted to escape immune pressure. These phenotypic changes were associated with three separate consensus-level non-synonymous mutations that accrued in the viral RNA-encoding amino acids at positions VP266, VP280 and VP1155, corresponding to known epitope sites. High-throughput sequencing also identified further nucleotide substitutions within the regions encoding the leader (Lpro), VP4, VP2 and VP3 proteins. While association of the later mutations with the adaptation to immune pressure must be further verified, these results highlight the multiple routes by which FMDV populations can escape neutralising antibodies and support the application of a simple in vitro approach to assess the impact of the humoral immune system on the evolution of FMDV and potentially other viruses.
Asunto(s)
Virus de la Fiebre Aftosa , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside/genética , Epítopos/genéticaRESUMEN
Non-coding regions of viral RNA (vRNA) genomes are critically important in the regulation of gene expression. In particular, pseudoknot (PK) structures, which are present in a wide range of RNA molecules, have a variety of roles. The 5' untranslated region (5' UTR) of foot-and-mouth disease virus (FMDV) vRNA is considerably longer than in other viruses from the picornavirus family and consists of a number of distinctive structural motifs that includes multiple (2, 3 or 4 depending on the virus strain) putative PKs linked in tandem. The role(s) of the PKs in the FMDV infection are not fully understood. Here, using bioinformatics, sub-genomic replicons and recombinant viruses we have investigated the structural conservation and importance of the PKs in the FMDV lifecycle. Our results show that despite the conservation of two or more PKs across all FMDVs, a replicon lacking PKs was replication competent, albeit at reduced levels. Furthermore, in competition experiments, GFP FMDV replicons with less than two (0 or 1) PK structures were outcompeted by a mCherry FMDV wt replicon that had 4 PKs, whereas GFP replicons with 2 or 4 PKs were not. This apparent replicative advantage offered by the additional PKs correlates with the maintenance of at least two PKs in the genomes of FMDV field isolates. Despite a replicon lacking any PKs retaining the ability to replicate, viruses completely lacking PK were not viable and at least one PK was essential for recovery of infections virus, suggesting a role for the PKs in virion assembly. Thus, our study points to roles for the PKs in both vRNA replication and virion assembly, thereby improving understanding the molecular biology of FMDV replication and the wider roles of PK in RNA functions.
Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Regiones no Traducidas 5' , Animales , Virus ADN , Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/genética , Genoma Viral , ARN Viral/química , Replicación Viral/genéticaRESUMEN
RNA structures can form functional elements that play crucial roles in the replication of positive-sense RNA viruses. While RNA structures in the untranslated regions (UTRs) of several picornaviruses have been functionally characterized, the roles of putative RNA structures predicted for protein coding sequences (or open reading frames [ORFs]) remain largely undefined. Here, we have undertaken a bioinformatic analysis of the foot-and-mouth disease virus (FMDV) genome to predict 53 conserved RNA structures within the ORF. Forty-six of these structures were located in the regions encoding the nonstructural proteins (nsps). To investigate whether structures located in the regions encoding the nsps are required for FMDV replication, we used a mutagenesis method, CDLR mapping, where sequential coding segments were shuffled to minimize RNA secondary structures while preserving protein coding, native dinucleotide frequencies, and codon usage. To examine the impact of these changes on replicative fitness, mutated sequences were inserted into an FMDV subgenomic replicon. We found that three of the RNA structures, all at the 3' termini of the FMDV ORF, were critical for replicon replication. In contrast, disruption of the other 43 conserved RNA structures that lie within the regions encoding the nsps had no effect on replicon replication, suggesting that these structures are not required for initiating translation or replication of viral RNA. Conserved RNA structures that are not essential for virus replication could provide ideal targets for the rational attenuation of a wide range of FMDV strains. IMPORTANCE Some RNA structures formed by the genomes of RNA viruses are critical for viral replication. Our study shows that of 46 conserved RNA structures located within the regions of the foot-and-mouth disease virus (FMDV) genome that encode the nonstructural proteins, only three are essential for replication of an FMDV subgenomic replicon. Replicon replication is dependent on RNA translation and synthesis; thus, our results suggest that the three RNA structures are critical for either initiation of viral RNA translation and/or viral RNA synthesis. Although further studies are required to identify whether the remaining 43 RNA structures have other roles in virus replication, they may provide targets for the rational large-scale attenuation of a wide range of FMDV strains. FMDV causes a highly contagious disease, posing a constant threat to global livestock industries. Such weakened FMDV strains could be investigated as live-attenuated vaccines or could enhance biosecurity of conventional inactivated vaccine production.
Asunto(s)
Virus de la Fiebre Aftosa/genética , Genoma Viral , Sistemas de Lectura Abierta , ARN Viral/química , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Virus de la Fiebre Aftosa/enzimología , Mutagénesis , ARN Polimerasa Dependiente del ARN/metabolismoRESUMEN
High-throughput sequencing such as those provided by Illumina are an efficient way to understand sequence variation within viral populations. However, challenges exist in distinguishing process-introduced error from biological variance, which significantly impacts our ability to identify sub-consensus single-nucleotide variants (SNVs). Here we have taken a systematic approach to evaluate laboratory and bioinformatic pipelines to accurately identify low-frequency SNVs in viral populations. Artificial DNA and RNA "populations" were created by introducing known SNVs at predetermined frequencies into template nucleic acid before being sequenced on an Illumina MiSeq platform. These were used to assess the effects of abundance and starting input material type, technical replicates, read length and quality, short-read aligner, and percentage frequency thresholds on the ability to accurately call variants. Analyses revealed that the abundance and type of input nucleic acid had the greatest impact on the accuracy of SNV calling as measured by a micro-averaged Matthews correlation coefficient score, with DNA and high RNA inputs (107 copies) allowing for variants to be called at a 0.2% frequency. Reduced input RNA (105 copies) required more technical replicates to maintain accuracy, while low RNA inputs (103 copies) suffered from consensus-level errors. Base errors identified at specific motifs identified in all technical replicates were also identified which can be excluded to further increase SNV calling accuracy. These findings indicate that samples with low RNA inputs should be excluded for SNV calling and reinforce the importance of optimising the technical and bioinformatics steps in pipelines that are used to accurately identify sequence variants.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple/genética , Virus/genética , ADN Viral , Genes Virales , Variación Genética , Genoma Viral , Técnicas In Vitro/métodos , Modelos Teóricos , ARN ViralRESUMEN
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hooved animals that poses a constant burden on farmers in endemic regions and threatens the livestock industries in disease-free countries. Despite the increased number of publicly available whole genome sequences, FMDV data are biased by the opportunistic nature of sampling. Since whole genomic sequences of Southern African Territories (SAT) are particularly underrepresented, this study sequenced 34 isolates from eastern and southern Africa. Phylogenetic analyses revealed two novel genotypes (that comprised 8/34 of these SAT isolates) which contained unusual 5′ untranslated and non-structural encoding regions. While recombination has occurred between these sequences, phylogeny violation analyses indicated that the high degree of sequence diversity for the novel SAT genotypes has not solely arisen from recombination events. Based on estimates of the timing of ancestral divergence, these data are interpreted as being representative of un-sampled FMDV isolates that have been subjected to geographical isolation within Africa by the effects of the Great African Rinderpest Pandemic (1887–1897), which caused a mass die-out of FMDV-susceptible hosts. These findings demonstrate that further sequencing of African FMDV isolates is likely to reveal more unusual genotypes and will allow for better understanding of natural variability and evolution of FMDV.
Asunto(s)
Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Variación Genética , Genotipo , Regiones no Traducidas 5' , África Oriental/epidemiología , África Austral/epidemiología , Animales , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/aislamiento & purificación , Genoma Viral , Epidemiología Molecular , Filogeografía , Recombinación Genética , Homología de Secuencia , Proteínas no Estructurales Virales/genética , Secuenciación Completa del GenomaRESUMEN
Recombination is one of the determinants of genetic diversity in the foot-and-mouth disease virus (FMDV). FMDV sequences have a mosaic structure caused by extensive intra- and inter-serotype recombination, with the exception of the capsid-encoding region. While these genome-wide patterns of broad-scale recombination are well studied, not much is known about the patterns of recombination that may exist within infected hosts. In addition, detection of recombination among viruses evolving at the within-host level is challenging due to the similarity of the sequences and the limitations in differentiating recombination from point mutations. Here, we present the first analysis of recombination events between closely related FMDV sequences occurring within buffalo hosts. The detection of these events was made possible by the occurrence of co-infection of two viral swarms with about 1% nucleotide divergence. We found more than 15 recombination events, unequally distributed across eight samples from different animals. The distribution of these events along the FMDV genome was neither uniform nor related to the phylogenetic distribution of recombination breakpoints, suggesting a mismatch between within-host evolutionary pressures and long-term selection for infectivity and transmissibility.
Asunto(s)
Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Genoma Viral , Cuasiespecies , Recombinación Genética , Animales , Búfalos , Proteínas de la Cápside/genética , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Cricetinae , Evolución Molecular , Polimorfismo de Nucleótido Simple/genética , ARN Viral/genéticaRESUMEN
Nonenveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome, as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals, and human. In the picornavirus family of nonenveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here, we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA, we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem-loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses.IMPORTANCE In order to transmit their genetic material to a new host, nonenveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many nonenveloped RNA viruses the requirements for this critical part of the viral life cycle remains poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple, and transferable to the study of packaging signals in other RNA viruses. Improved understanding of RNA packaging may lead to novel vaccine approaches or targets for antiviral drugs with broad-spectrum activity.
Asunto(s)
Virus de la Fiebre Aftosa/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Viral/química , Ensamble de Virus , Animales , Línea Celular , Cricetinae , Virus de la Fiebre Aftosa/genética , Genoma Viral , Modelos Moleculares , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN/métodosRESUMEN
The RNA genomes of picornaviruses are translated into single polyproteins which are subsequently cleaved into structural and non-structural protein products. For genetic economy, proteins and processing intermediates have evolved to perform distinct functions. The picornavirus precursor protein, P3, is cleaved to produce membrane-associated 3A, primer peptide 3B, protease 3Cpro and polymerase 3Dpol. Uniquely, foot-and-mouth disease virus (FMDV) encodes three similar copies of 3B (3B1-3), thus providing a convenient natural system to explore the role(s) of 3B in the processing cascade. Using a replicon system, we confirmed by genetic deletion or functional inactivation that each copy of 3B appears to function independently to prime FMDV RNA replication. However, we also show that deletion of 3B3 prevents replication and that this could be reversed by introducing mutations at the C-terminus of 3B2 that restored the natural sequence at the 3B3-3C cleavage site. In vitro translation studies showed that precursors with 3B3 deleted were rapidly cleaved to produce 3CD but that no polymerase, 3Dpol, was detected. Complementation assays, using distinguishable replicons bearing different inactivating mutations, showed that replicons with mutations within 3Dpol could be recovered by 3Dpol derived from "helper" replicons (incorporating inactivation mutations in all three copies of 3B). However, complementation was not observed when the natural 3B-3C cleavage site was altered in the "helper" replicon, again suggesting that a processing abnormality at this position prevented the production of 3Dpol. When mutations affecting polyprotein processing were introduced into an infectious clone, viable viruses were recovered but these had acquired compensatory mutations in the 3B-3C cleavage site. These mutations were shown to restore the wild-type processing characteristics when analysed in an in vitro processing assay. Overall, this study demonstrates a dual functional role of the small primer peptide 3B3, further highlighting how picornaviruses increase genetic economy.